Decoding Hydrogen Embrittlement in High Strength Coiled Tubing: Insights from Acid-Induced Failures, Field Data Analysis, and Corrosion Management Strategies

Author:

McClelland G.1,Galvan I. I.1,Mallanao G. L.1,Watson B.2

Affiliation:

1. FET Global Tubing, Dayton, Texas, USA

2. STEP Energy Services, Calgary, Alberta, Canada

Abstract

Abstract Recent reports have highlighted hydrogen embrittlement (HE) of high strength, quench-and-temper (Q&T) coiled tubing (CT) resulting from hydrochloric (HCl) acid usage in sour environments. HCl acid treatments expose CT surfaces to aggressive corrosion, often exacerbated by H2S from formation fluids or as a chemical reaction. Helping the CT industry recognize the morphologies of damage when the tube is retired and re-evaluating the CT grade selection and chemicals are vital for averting costly and dangerous CT failures. To establish a comprehensive case history preceding the CT failure mode, pertinent field data must be collected and correlated, encompassing job frequency, acid and H2S exposure duration, concentration levels, downhole conditions, and inhibition procedures. Metallurgical analysis, including an exhaustive battery of tests, was conducted on the specimens: visual assessment, dimensional verification, fractography, metallographic analysis, mechanical integrity evaluation (comprising hardness and tensile testing), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS), along with sodium azide spot testing. A summary of field failures was evaluated from diverse operational environments and locations. Multiple factors contributed to premature CT retirement, particularly inadequate corrosion inhibition and sulfide scavenger programs. However, environmental conditions, operational stresses, microstructural differences, and susceptibilities of various high-grade materials (Q&T and conventional) were correlated and compared with industry research. Low pH fluids like hydrochloric acid or other acidic substances combined with H2S presence created a susceptibility for the high-grade CT materials consistent with other high strength oil and gas carbon steel materials. Material properties, specifically tensile strength and hardness showed a distinct susceptibility to HE with increasing tensile strength. Steels with tensile strengths below 140-ksi are relatively less vulnerable to HE, but susceptibility significantly escalates beyond this threshold. Typically, low cycle fatigue promoted complete through-wall crack propagation, with some cases demonstrating fatigue originating from the steel centerline, where hydrogen ions from acid tend to migrate and recombine as gas. Other initiation points include the OD/ID surfaces and the longitudinal weld. These initiation points demonstrated consistent hydrogen embrittlement intergranular failure mechanisms. Recent materials research in the Oil and Gas space related to HE and H2S exposure on materials similar to coiled tubing was evaluated for relevance. Two interesting areas of research are presented: fracture propagation theories with hydrogen presence related to fatigue environments, and the influence of various iron sulfide films resulting from the corrosion reaction of H2S and steel. Sour immersion testing results on high strength coiled tubing are also presented to demonstrate the effectiveness of commercially available inhibitors compared to no inhibition, with good results on Q&T coiled tubing. This study emphasizes the vital need to evaluate well conditions and working fluids compatibility (including inhibition) with CT materials to prolong CT operational life. Additionally, this study details the morphology of H2S-induced CT failures in acid stimulations, whether due to HE, Sulfide Stress Cracking (SSC), or Stress Corrosion Cracking (SCC), giving insight to future job planning. Prioritizing prevention planning with robust corrosion management is crucial for prolonging overall service life and minimizing operational disruptions in acidic environments using high strength Q&T CT.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3