Fully Coupled Multiblock Wells in Oil Simulation

Author:

Behie A.1,Collins D.1,Forsyth P.A.1,Sammon P.H.1

Affiliation:

1. Computer Modelling Group

Abstract

Abstract A fully coupled treatment of oil wells that are completed in more than one zone results in a bordered matrix. This paper develops solution algorithms that incorporate paper develops solution algorithms that incorporate existing direct and iterative (incomplete LU) solutions in a straightforward manner. Timings in scalar and vector modes on the Cray for a typical reservoir simulation problem are presented. problem are presented. Introduction Numerical simulation of oil reservoirs requires the solution of coupled sets of highly nonlinear partial differential equations. These equations represent the conservation of oil, gas, water, and energy. It usually is necessary to solve from 3 to 10 coupled equations per finite-difference cell. The equations usually are discretized by use of a nearest-neighbor coupling in space and a fully implicit timestep scheme. The resulting set of nonlinear algebraic equations then is solved by Newtonian iteration., Clearly, simulation of large systems requires effective solution of the Jacobian matrix. Many practical reservoir simulation problems involve multiblock wells or fractures. These situations arise when a well is completed in several layers, and consequently the wellbore penetrates several finite-difference cells. Each conservation equation in a cell penetrated by a well will have a source term of the form .....................................(1) where qjt is the mass influx of component k (resulting from the well), Xk is the mobility of component k, 1 pi is the pressure in cell i, and pi, is the unknown wellbore pressure in well j. pressure in well j. To specify the wellbore pressure, pi, an additional equation is required. This extra equation as generally a constraint op the total flow into the well - This constraint is of the form .....................................(2) where qJt. is the total specified fluid flow into well j, Nc, is the total number of components, and is the set of cell numbers penetrated by well j. Because several cells are connected to the same well, there is now an extra degree of coupling between these cells through the well-bore pressure. This coupling generally will not be consistent with the coupling produced by the usual finite-difference molecule. If the well pressures, pjw, are treated explicitly, or are lagged one iteration, convergence difficulties or stability limitations often result. 7 Fully coupled treatment of multiblock wells gives rise to a bordered matrix. We develop various methods to solve these systems. These methods are specifically designed for the block-banded systems arising from fully implicit thermal problems, although similar methods can be used for single-component systems The iterative methods are extensions of the incomplete factorization techniques (ILU), and a direct method is presented for comparison. Existing solution routines can be modified easily to solve the bordered system. Solution of the Bordered Matrix The standard approach to solving fully implicit, fully coupled multiblock wells (or fractures) is to order the unknowns so that those connected with flow in the reservoir (cell pressures, saturations, etc.) appear first in the solution vector. The unknowns connected with the well (well pressures) are placed last in the solution vector. This produces a bordered Jacobian matrix (see Fig. 1). The upper left portion of the matrix has the usual incidence matrix for the Jacobian of nearest-neighbor finite-difference discretization. The incidence matrix for the Jacobian is a matrix with entries zero if the Jacobian elements are zero, and with entries one if the Jacobian elements are nonzero. The border of columns on the upper right of Fig. 1 contains derivatives of the source terms (Eq. 1) with respect to the wellbore pressure The border of rows on the lower left contains derivatives of the constraint equations (Eq. 2) with respect to reservoir variables (i.e., cell pressures). The block on the lower right contains derivatives of the constraint equations with respect to the wellbore pressures and is diagonal. The number of extra columns and rows is proportional to the number of fully coupled wells (or fractures). Although the incidence matrix of the reservoir flow portion of the matrix is symmetric, the incidence matrix of portion of the matrix is symmetric, the incidence matrix of the borders is not necessarily symmetric. George discusses three possible block factorizations of sparse, linear systems. The algorithm used here is based on his second factorization. SPEJ P. 535

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3