Subsurface Compressor System Improves Gas Production in Unconventional Reservoirs

Author:

Carpenter Chris1

Affiliation:

1. JPT Technology Editor

Abstract

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 201138, “Liquid Removal To Improve Gas Production and Recoverable Reserves in Unconventional Liquid-Rich Reservoirs by Subsurface Wet Gas Compression,” by Lukas Nader, SPE, David Biddick, SPE, and Herman Artinian, SPE, Upwing Energy, et al., prepared for the 2020 SPE Virtual Artificial Lift Conference and Exhibition—Americas, 10–12 November. The paper has not been peer reviewed. This paper describes an artificial lift technology, a subsurface compressor system (SCS), that simultaneously removes liquids, increases gas production, and improves recoverable reserves in gas wells. The subsurface compressor can reverse the vicious cycle of liquid loading, which decreases gas production from a gas well and leads to premature abandonment, by creating a virtuous cycle of increased gas and condensate production. The first field trial of the technology in an unconventional shale gas well supports the mechanism of subsurface gas compression and its benefit to unconventional gas production. The SCS This paper focuses on the latest deployed design. As with all SCS systems, this unit has three major components (Fig. 1). High-Speed Motor. The motor is a four-pole, high-speed, permanent-magnet (PM) synchronous topology. The motor maximum operating speed is 50,000 rev/min, with a 55,000-rev/min overspeed. Surface-mounted PMs are retained on the shaft surface. A sine filter is also used to minimize harmonic losses in the rotor, eliminating the need for active cooling flow in the rotor cavity. With the motor housing hermetically sealed from the environment and maintaining a low pressure within the housing, a minimum life of 20 years is expected from the electrical motor section. The motor rotor is levitated with passive magnetic bearings, requiring no lubrication or a pressurized air source, to support the high-speed rotating shafts. Magnetic Coupling. The magnetic coupling consists of three major components: the male and female ends of the magnetic coupling as well as the isolation can in between. The female end of the magnetic coupling is attached directly to the motor. The isolation can is used to seal the female magnetic coupling section hermetically within the body of the PM motor from the environment. Using a magnetic coupling to transmit torque through an isolation can is one of the key features of the protectorless, rotating, sealless motor system to ensure reliability of the motor. Hybrid Wet Gas Compressor. The compressor is a multistage hybrid axial flow wet compressor. The key advantage of this proprietary compressor design is its relatively straight flow path compared with those of centrifugal compressors. When the flow path is straight, with little change of direction, the heavier constituents, including liquids and solids, will follow the gas phase because there is little or no centrifugal force to separate the high-density phases from the low-density one. Also, erosion of the compressor parts is minimized by the straight flow pattern because of the lower probability of impingements of solid particles on the compressor internal surfaces compared with the torturous internal paths of centrifugal compressors. The remainder of the system, as well as the deployment, is very similar to an electrical submersible pump.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-parameter Optimization for Downhole Gas Compression System;Springer Series in Geomechanics and Geoengineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3