Characterising Hydraulic Fracture Contribution in Shale Oil Wells Using High-Precision Temperature and Spectral Noise Logging

Author:

Aslanyan Arthur1,Aslanyan Irina1,Kuzyutin Roman1,Volkov Maxim1,Karantharath Radhakrishnan1,Shnaib Fathi1

Affiliation:

1. TGT Oilfield Services LLC

Abstract

Abstract Over the last decade, an industry-wide shift to shale plays has occurred due to advances in technology allowing for the economic recovery of previously unattractive reserves. The primary objective of well completions in shale reservoirs is to increase the effective surface area and thus maximise reservoir contact, as the fracture network area is the most important factor affecting production from such reservoirs. Understanding which hydraulic fractures actively contribute to production in shale reservoirs is essential for well performance evaluation and improving current completion design. This last point is, in turn, essential for expected high productivities to offset high drilling and completion costs of unconventional oil wells. Today, unconventional plays are economically developed through stimulation of horizontal wells by hydraulic fracturing. Conventional production logging (spinner, borehole fluid salinity, density and flowing temperature surveys) often fail to identify which stage produces the greatest effect on hydrocarbon production. The integration of High Precision Temperature (HPT) Logging and Spectral Noise Logging (SNL) data is the most effective method of Reservoir Flow Analysis due to the large radius of investigation of these tools. For this reason, HPT-SNL can be effectively used for post-hydrofracturing diagnostics. More specifically, it can assess individual fracture contributions to the overall well flow. Spectral Noise Logging can not only pick up flow in rocks behind multiple barriers of casing and cement but also tell whether such flow comes from fractures, the rock matrix, perforations or completion components. High Precision Temperature (HPT) logging detects minute variations in fluid temperature caused by heat exchange that depends on the thermodynamic properties (heat flux, thermal conductivities, etc.) of completion components, formation rocks and fluids. Both technologies have been successfully applied in the shale-oil wells of the Permian basin and clearly differentiated between contributing and inactive fractures. Such information is critical for improving hydraulic fracturing job designs for wells to be drilled in the Permian Basin.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3