Novel Methods for Cost-Effectively Generating a Heterogeneous Core Model Based on Scale Change of Nuclear Magnetic Resonance and X-ray Computed Tomography Data

Author:

Zhou Zili1ORCID,Jia Hu2ORCID,Zhang Rui3

Affiliation:

1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University

2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University (Corresponding author)

3. Oilfield Production Research Institute of China Oilfield Services Ltd.

Abstract

Summary In response to the constraint on model size imposed by computational capabilities and the inability to capture the heterogeneity within the core and its dynamic oil displacement characteristics, this paper proposes two novel methods for cost-effectively modeling heterogeneous core models based on scale changes of nuclear magnetic resonance (NMR) and X-ray computed tomography (X-CT) data, respectively. By utilizing NMR and X-CT techniques to characterize information at the subcore scale, we establish a more realistic model at the core scale. First, by using a method of setting up inactive grids, a homogeneous model is established to better represent the actual cross-section of the core. By fitting the core water displacement experimental data, a random heterogeneous core model based on the NMR-T2 spectrum is established by using the modified Schlumberger-Doll Research (SDR) model and complementarity principle. The numerical simulation results show that the random heterogeneous core model partially reflect the heterogeneity of the core, but the simulation results are unstable. Building on this, a deterministic homogeneous core model is established based on X-CT scan data by using the modified Kozeny-Carman model and pore extraction method. Sensitivity analysis results suggest that higher grid accuracy leads to a better fitting effect, with the axial plane grid accuracy impacting the model water-drive process more significantly than that of the end plane. The study paves the way for the rapid and accurate establishment of core models.

Publisher

Society of Petroleum Engineers (SPE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3