Dynamic Fracture Characterization From Tracer-Test and Flow-Rate Data With Ensemble Kalman Filter

Author:

Elahi Siavash Hakim1,Jafarpour Behnam1

Affiliation:

1. University of Southern California

Abstract

Summary Hydraulic fracturing is performed to enable production from low-permeability and organic-rich shale-oil/gas reservoirs by stimulating the rock to increase its permeability. Characterization and imaging of hydraulically induced fractures is critical for accurate prediction of production and of the stimulated reservoir volume (SRV). Recorded tracer concentrations during flowback and historical production data can reveal important information about fracture and matrix properties, including fracture geometry, hydraulic conductivity, and natural-fracture density. However, the complexity and uncertainty in fracture and reservoir descriptions, coupled with data limitations, complicate the estimation of these properties. In this paper, tracer-test and production data are used for dynamic characterization of important parameters of hydraulically fractured reservoirs, including matrix permeability and porosity, planar-fracture half-length and hydraulic conductivity, discrete-fracture-network (DFN) density and conductivity, and fracture-closing (conductivity-decline) rate during production. The ensemble Kalman filter (EnKF) is used to update uncertain model parameters by sequentially assimilating first the tracer-test data and then the production data. The results indicate that the tracer-test and production data have complementary information for estimating fracture half-length and conductivity, with the former being more sensitive to hydraulic conductivity and the latter being more affected by fracture half-length. For characterization of DFN, a stochastic representation is adopted and the parameters of the stochastic model along with matrix and hydraulic-fracture properties are updated. Numerical examples are presented to investigate the sensitivity of the observed production and tracer-test data to fracture and matrix properties and to evaluate the EnKF performance in estimating these parameters.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3