Prediction and Mitigation of Torsional Vibrations in Drilling Systems

Author:

Hohl Andreas1,Tergeist Mathias2,Oueslati Hatem1,Herbig Christian1,Ichaoui Mohamed2,Ostermeyer Georg-Peter2,Reckmann Hanno1

Affiliation:

1. Baker Hughes

2. Technische Universität Braunschweig, Institute of Dynamics and Vibrations

Abstract

Abstract Drilling systems are subject to torsional vibrations that are excited by bit-rock or by drillstring formation interaction forces. These torsional oscillations can be distinguished by mode shape and frequency. Well-known stick/slip oscillations are characterized by low frequencies (usually below 1 Hz) and affect the entire drill-string. High-frequency torsional oscillations (HFTO), in contrast, name the excitation of a high-order natural mode (reaching 400 Hz). In case of HFTO, the bottom-hole assembly (BHA) is exposed to high dynamics loads. Torsional vibrations compromise drilling efficiency and tool reliability. To address these challenges, we are proposing a method for automated BHA optimization based on mechanical drill string models. Through extensive analysis of high-frequency (1400 Hz sampling frequency) data from field measurements, an analytical, verified, and easy to use criterion for the prediction of the excited torsional mode and the corresponding loads was derived. The criterion is based on the comparison of the resulting excitation from cutting forces at the bit and the damping of a torsional mode. The criterion is unique for every torsional mode and can be used to rank the susceptibility of torsional modes for HFTO or stick/slip. A software application (Torsional Oscillation Advisor, TOA) has been developed for user-friendly interpretation of the underlying analytical method towards practical issues. The use of the TOA provides valuable input for drilling optimization: For stick/slip, the influence of various drill pipe sizes and the length of the drill pipe section on torsional stick/slip mode are analyzed. It is shown that the limit for stable drilling in case of bit induced stick/slip can be extended by stiffer drill pipes whereas the influence of the length of the drill pipe section is marginal. The material of the bit and its mass distribution is shown to have a considerable influence on the excitation of HFTO. The software also enables automated BHA optimization in both new product development and tool operation phases. A numerical optimization approach is used to minimize the susceptibility of the bottom-hole assembly for stick/slip and HFTO for given constraints of the geometry and material parameters. Herein, a significant increase of stable drilling conditions regarding weight on bit and bit rotational speed with respect to torsional oscillations is achieved. Even small changes in the drilling system design have a visible impact on the torsional stability. The ability to identify and predict modes of stick/slip and HFTO that are most likely to be excited while drilling, an extension of the stable drilling zone and the estimation of loads before field deployment will result in higher drilling efficiency, more reliable tools and lower non-productive time.

Publisher

SPE

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3