The Role of Hybrid IoT with Cloud Computing and Fog Computing to Help the Oil and Gas Industry Recover from Covid-19 and Face Future Challenges

Author:

Alkamil Ethar H. K.1,Mutlag Ammar A.2,Alsaffar Haider W.3,Sabah Mustafa H.4

Affiliation:

1. University of Basrah

2. Universiti Teknikal Malaysia Melaka

3. Halliburton Worldwide Limited

4. AKT Oil Services

Abstract

Abstract Recently, the oil and gas industry faced several crucial challenges affecting the global energy market, including the Covid-19 outbreak, fluctuations in oil prices with considerable uncertainty, dramatically increased environmental regulations, and digital cybersecurity challenges. Therefore, the industrial internet of things (IIoT) may provide needed hybrid cloud and fog computing to analyze huge amounts of sensitive data from sensors and actuators to monitor oil rigs and wells closely, thereby better controlling global oil production. Improved quality of service (QoS) is possible with the fog computing, since it can alleviate challenges that a standard isolated cloud can't handle, an extended cloud located near underlying nodes is being developed. The paradigm of cloud computing is not sufficient to meet the needs of the already extensively utilized IIoT (i.e., edge) applications (e.g., low latency and jitter, context awareness, and mobility support) for a variety of reasons (e.g., health care and sensor networks). Couple of paradigms just like mobile edge computing, fog computing, and mobile cloud computing, have arisen in recently to meet these criteria. Fog computing helps to optimize services and create better user experiences, such as faster responses for critical, time-sensitive needs. At the same time, it also invites problems, such as overload, underload, and disparity in resource usage, including latency, time responses, throughput, etc. The comprehensive review presented in this work shows that fog devices have highly constrained environments and limited hardware capabilities. The existing cloud computing infrastructure is not capable of processing all data in a centralized manner because of the network bandwidth costs and response latency requirements. Therefore, fog computing demonstrated, instead of edge computing, and referred to as "the enabling technologies allowing computation to be performed at the edge of the network, on downstream data on behalf of cloud services and upstream data on behalf of IIoT services" (Shi et al., 2016) is more effective for data processing when data sources are close together. A review of fog and cloud computing literature suggests that fog is better than cloud computing because fog computing performs time-dependent computations better than cloud computing. The cloud is inefficient for latency-sensitive multimedia services and other time-sensitive applications since it is accessible over the internet, like the real-time monitoring, automation, and optimization of petroleum industry operations. As a result, a growing number of IIoT projects are dispersing fog computing capacity throughout the edge network as well as through data centers and the public cloud. A comprehensive review of fog computing features is presented here, with the potential of using it in the petroleum industry. Fog computing can provide a rapid response for applications through preprocess and filter data. Data that has been trimmed can then be transmitted to the cloud for additional analysis and better service delivery.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3