The Azimuth of Deep, Penetrating Fractures in The Wattenberg Field

Author:

Smith M.B.1,Holman G.B.1,Fast C.R.1,Covlin R.J.1

Affiliation:

1. Amoco Production Co.

Abstract

An experimental program was conducted in the Wattenberg gas field that included borehole measurements, surface measurements, and laboratory tests on oriented cores. Results indicated an apparent variation in azimuth over the field, good correlation between strength anisotropy and fracture azimuth, and that fracture length may not be symmetric around the wellbore. Introduction With better wellhead gas prices and increased demand for gas, it has become economically feasible to produce the so-called "tight" gas reservoirs. Massive hydraulic fracturing (MHF) has proved successful in producing these formations. An MHF stimulation, which may involve thousands of barrels of fluid and 1 million lb or more of proppant material, creates a deep, penetrating fracture proppant material, creates a deep, penetrating fracture extending from the wellbore. These fractures generally proceed along a single azimuth line in both directions proceed along a single azimuth line in both directions from the wellbore and may extend 1 mile or more from tip to tip. The optimum draining of such a reservoir demands a knowledge of the azimuth of the fractures. A field experimental program was set up to measure fracture azimuth in the Wattenberg field. The Wattenberg gas field is located north of Denver, Colo. The Muddy "J" formation is the major gas producing zone. This blanket sandstone formation is found at producing zone. This blanket sandstone formation is found at about 8,000 ft and has permeabilities ranging from 5 to 50 md. Natural gas production from this zone ranges from a small show of gas to 100 Mcf/D. The field can be produced economically only through massive produced economically only through massive fracturing. A more complete description of the field is found in Refs. 1 and 2. The success of massive fracturing in this field indicates that a deep, penetrating fracture is created. History of Fracture Orientation Work This study of the fracture azimuth in Wattenberg field began in 1973, when an attempt was made to monitor the progress of an induced fracture with an arrangement of progress of an induced fracture with an arrangement of seismometers located on the surface. These devices were placed both radially and linearly from the well. However, placed both radially and linearly from the well. However, acquisition systems and processing techniques were unable to discriminate the low-level signals in a relatively high noise environment. A second attempt to determine the direction of fractures was tried in Jan. 1975 at Well G (see Fig. 1), which was completed open hole rather than through casing in Feb. 1971. Wells in Wattenberg normally are completed with 4 1/2-in. casing set through the pay zone, perforated, and fractured. However, Well G was completed open hole and provided an excellent opportunity to try orientation work. Well G, located in the southwest part of the field, was completed originally with an initial flow rate of 791 Mcf/D after stimulation by fracturing with 38,000 gal of gelled water. In Jan. 1975, before restimulation by fracturing with 310,000 gal of polymer emulsion, impression packers were run to determine fracture azimuth. Two attempts were made with 22 ft of packer on tubing. However, both attempts resulted in packer rupture. A third attempt after refracturing was scheduled, but was cancelled because of hole sloughing. Analysis of the first two attempts indicated that hole enlargement caused by the first fracture was the primary cause of failure. JPT P. 185

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3