Cocurrent Spontaneous Imbibition In Porous Media With the Dynamics of Viscous Coupling and Capillary Backpressure

Author:

Andersen Pål Østebø1,Qiao Yangyang1,Standnes Dag Chun1,Evje Steinar1

Affiliation:

1. University of Stavanger

Abstract

Summary This paper presents a numerical study of water displacing oil using combined cocurrent/countercurrent spontaneous imbibition (SI) of water displacing oil from a water-wet matrix block exposed to water on one side and oil on the other. Countercurrent flows can induce a stronger viscous coupling than during cocurrent flows, leading to deceleration of the phases. Even as water displaces oil cocurrently, the saturation gradient in the block induces countercurrent capillary diffusion. The extent of countercurrent flow may dominate the domain of the matrix block near the water-exposed surfaces while cocurrent imbibition may dominate the domain near the oil-exposed surfaces, implying that one unique effective relative permeability curve for each phase does not adequately represent the system. Because relative permeabilities are routinely measured cocurrently, it is an open question whether the imbibition rates in the reservoir (depending on a variety of flow regimes and parameters) will in fact be correctly predicted. We present a generalized model of two-phase flow dependent on momentum equations from mixture theory that can account dynamically for viscous coupling between the phases and the porous media because of fluid/rock interaction (friction) and fluid/fluid interaction (drag). These momentum equations effectively replace and generalize Darcy's law. The model is parameterized using experimental data from the literature. We consider a water-wet matrix block in one dimension that is exposed to oil on one side and water on the other side. This setup favors cocurrent SI. We also account for the fact that oil produced countercurrently into water must overcome the so-called capillary backpressure, which represents a resistance for oil to be produced as droplets. This parameter can thus influence the extent of countercurrent production and hence viscous coupling. This complex mixture of flow regimes implies that it is not straightforward to model the system by a single set of relative permeabilities, but rather relies on a generalized momentum-equation model that couples the two phases. In particular, directly applying cocurrently measured relative permeability curves gives significantly different predictions than the generalized model. It is seen that at high water/oil-mobility ratios, viscous coupling can lower the imbibition rate and shift the production from less countercurrent to more cocurrent compared with conventional modeling. Although the viscous-coupling effects are triggered by countercurrent flow, reducing or eliminating countercurrent production by means of the capillary backpressure does not eliminate the effects of viscous coupling that take place inside the core, which effectively lower the mobility of the system. It was further seen that viscous coupling can increase the remaining oil saturation in standard cocurrent-imbibition setups.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3