Quantitative Analysis of Reaction-Rate Retardation in Surfactant-Based Acids

Author:

Nasr-El-Din H. A.1,Al-Mohammad A. M.1,Al-Aamri A. D.1,Al-Fahad M. A.1,Chang F. F.2

Affiliation:

1. Saudi Aramco

2. Schlumberger

Abstract

Summary Fracture acidizing has been a dominant practice in the industry to enhance well productivity in low-permeability carbonate reservoirs. Many acid systems have been developed to improve this stimulation process. The most desirable characteristics for an acid system to be suitable for fracture acidizing are leakoff control and retarded reaction rate. These characteristics are required for deep acid penetration, so that when the fracture closes, long flow channels are etched on the fracture surfaces. Leakoff control can be achieved by pumping a pad containing a viscosifying agent or solid bridging agents to plug wormholes generated by acid dissolution. Reaction retardation is attempted usually by lowering the effective diffusivity of the hydrogen ion. It is well known that during an acid-fracturing operation, the overall reaction rate of hydrochloric acid (HCl) with limestone is mass-transfer-limited. Designing the treatment requires knowing the effective diffusivity of the hydrogen ion in the acid system, which, to the best of the authors' knowledge, has not been determined before. Because of their combined leakoff-control and retardation capabilities, surfactant-based acids have been used in acid-fracturing treatments. Because more carbonate reservoirs are treated by use of this acid system, it is important to obtain the effective diffusivity of H+. The rotating-disk device has been used to investigate the reaction kinetics between a reactive solution and carbonate rocks because the thickness of the boundary layer is uniform throughout the disk surface. This paper discusses the reaction-rate data generated recently for surfactant-based acid by use of a rotating-disk apparatus and presents the methodology used to determine the effective diffusivity from the measurements. The results obtained indicated that the viscoelastic surfactant examined (carboxybetaine-type) reduced the dissolution rate of calcite with HCl acid. The surfactant reduced the diffusion coefficient for H+. The effect of temperature on the diffusion coefficient did not follow the Arrhenius law.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3