Predicting Rate of Penetration Using Artificial Intelligence Techniques

Author:

Al-AbdulJabbar Ahmad1,Elkatatny Salaheldin1,Mahmoud Mohamed1,Abdulraheem Abdulazeez1

Affiliation:

1. KFUPM

Abstract

Abstract Rate of Penetration referrers to the speed of breaking the rock under the bit. It measures the speed or the progress of the bit when it drills the formation. It has been reported in the industry that high percentage of the well budget is spent on the drilling phase, thus many drilling operators pay close attention to this factor and try to optimize it as much as possible. However, it is very challenging to capture the effect of each individual parameter since most of them are interconnected, and changing one parameter affects the other. As a result, many companies maintain a data for the drilling performance per field and set certain benchmarks to gauge the speed of any newly drilled well. To date, no solid or reliable model exists because of the complexity of the drilling process, and one cannot capture every factor to predict the rate of penetration. Therefore, the utilization of artificial intelligence (AI) in the drilling applications will be a game changer since most of the unknown parameters are accounted for during the modeling or training process. The objective of this paper is to develop a rate of penetration model using artificial neural network (ANN) with the least possible number of inputs. Actual field data of more than 4,500 data points were used to build the model. The inputs were pumping rate, weight on bit, rotation speed, torque, stand pipe pressure and unconfined compressive strength. Well-A was used to train and test the model with 70/30 data ratio. Then two unseen data which are well-B and well-C were used to test the model. ANN was used in this study, with many sensitivity analyses to achieve the best combination of parameters. The obtained results showed that ANN can be used effectively to predict the rate of penetration with average correlation coefficient of 0.94 and average absolute percentage error of 8.6%, which shows 22% improvement over the current published methods. The best ANN model was achieved using 1 layer, 12 neurons and a linear transfer function. The developed ANN-ROP model proved to be successful using only six inputs and having a total of two wells with unseen data.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3