Phase Behavior and Physical Properties of Dimethyl Ether/Water/Heavy-Oil Systems Under Reservoir Conditions

Author:

Huang Desheng1,Li Ruixue2,Yang Daoyong3

Affiliation:

1. University of Regina

2. Chengdu University of Technology and University of Regina (Corresponding author; email: liruixue100@163.com)

3. University of Regina (Corresponding author; email: tony.yang@uregina.ca)

Abstract

Summary Phase behavior and physical properties including saturation pressures, swelling factors (SFs), phase volumes, dimethyl ether (DME) partition coefficients, and DME solubility for heavy-oil mixtures containing polar substances have been experimentally and theoretically determined. Experimentally, novel phase behavior experiments of DME/water/heavy-oil mixtures spanning a wide range of pressures and temperatures have been conducted. More specifically, a total of five pressure/volume/temperature (PVT) experiments consisting of two tests of DME/heavy-oil mixtures and three tests of DME/water/heavy-oil mixtures have been performed to measure saturation pressures, phase volumes, and SFs. Theoretically, the modified Peng-Robinson equation of state (EOS) (PR EOS) together with the Huron-Vidal mixing rule, as well as the Péneloux et al. (1982)volume-translation strategy, is adopted to perform phase-equilibrium calculations. The binary-interaction parameter (BIP) between the DME/heavy-oil pair, which is obtained by matching the measured saturation pressures of DME/heavy-oil mixtures, works well for DME/heavy-oil mixtures in the presence and absence of water. The new model developed in this work is capable of accurately reproducing the experimentally measured multiphase boundaries, phase volumes, and SFs for the aforementioned mixtures with the root-mean-squared relative error (RMSRE) of 3.92, 9.40, and 0.92%, respectively, while it can also be used to determine DME partition coefficients and DME solubility for DME/water/heavy-oil systems.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3