Fully Coupled Analysis of Well Responses in Stress-Sensitive Reservoirs

Author:

Chin L. Y.1,Raghavan R.1,Thomas L. K.1

Affiliation:

1. Phillips Petroleum Co.

Abstract

Summary A fully coupled geomechanics and single-phase, fluid-flow model is developed to evaluate the combined effects of stress, fluid flow, and reservoir property changes on well responses in stresssensitive reservoirs. In particular, we pay attention to the interpretation of pressure buildup tests and to changes in the production characteristics of wells. In general, for weak hydrocarbon reservoirs that exhibit nonlinear, elastic and plastic constitutive behaviors, and stress-dependent properties such as permeability and porosity, the physical effect contributed from geomechanics may not be ignored in well test analysis. The coupled interaction between geomechanics and reservoir fluid production markedly affects the stress state and reservoir properties. Because we are using a coupled, numerical model, we evaluate the consequences of using simplified relationships (e.g., permeability as a function of pressure). Numerical analyses are performed to quantitatively assess the impact of reservoir stress sensitivity on practical well test problems. The key variables investigated in the study, that are important in evaluating stress-sensitive reservoirs, include permeability, porosity, and constitutive behaviors of reservoir rock including hysteresis and loading conditions. The development of high-stress regions around wellbores and its consequences on well performance are considered. The numerical results from the study indicate that for analyzing highly stress-sensitive reservoirs, a fully coupled geomechanics and fluid-flow modeling approach is necessary and the developed model employed in this study provides such a tool.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3