Vector Field Based Fault Modelling and Stratigraphic Horizons Deformation

Author:

Bouziat Antoine1

Affiliation:

1. Nancy School of Geology (ENSG), at University of Lorraine, France

Abstract

Abstract Consequent choices during hydrocarbon exploration and field developement depend on 3D numerical models of the main geological interfaces and the major faults in the area of interest. Such structural models provide decisive informations like reservoir rock volume or compartmentalization, and are unavoidable stages to build the reservoir grids used for resources estimation, flow simulations and well planning. However, these models need to be continually modified, either to integrate new information from well drilling and production history or to consider several hypotheses about the most uncertain features of the fault network. To do so, petroleum engineers involved in reservoir modeling need flexible and efficient tools to easily edit parts of structural models while preserving their general consistency. In a first step to handle structural model edition challenges, we propose a new way to numerically model a fault object and deform previously modelled stratigraphic horizons. This method is inspired by the "Vector Field based Shape Deformations" (VFSD ) techniques used by the Computer Graphics community. Our approach considers a fault as a 3D vector field, interpolated thanks to several scalar fields linked to the fault geometry and few scattered data points if available. This vector field is then integrated into path lines able to drive the deformation of the surrounding objects in a purely geometrical manner. The so-obtained deformation is limited to an influence region neighboring the fault and can affect several horizons simultaneously in a consistent and reversible way. Moreover, self-intersections can be prevented and both the first order smoothness and the fine-scale features of the deformed horizons are conserved. The vector field interpolation methodology we present is based on a user-defined conceptual model for deformation attenuation and a direction constraint on the displacement. It was implemented in common geomodelling software. The resulting tool is applicable on a wide range of fault geometries, and can be added as a new exit condition for fault network stochastic simulation algorithms. Last, some derived applications, related to salt diapir modelling or paleotopography restoration, are also conceivable.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3