Shale Gas: Nanometer-Scale Observations and Well Modelling

Author:

Silin Dmitriy1,Kneafsey Timothy J.2

Affiliation:

1. Shell International Exploration and Production Incorporated

2. Lawrence Berkeley Laboratory

Abstract

Summary Our studies of the underlying fundamental gas-recovery mechanisms from shale gas are motivated by expectations of the increasing role of shale gas in national energy portfolios worldwide. We use pore-scale analysis of reservoir shale samples to identify critical parameters to be employed in a gas-flow model used to evaluate well-production data. We exploit a number of 3D-imaging technologies to study the complexity of shale pore structure: from low-resolution X-ray computed tomography (CT) to focused ion beam and scanning electron microscopy (FIB/SEM). We observe that heterogeneity is present at all scales. The CT data show fractures, thin layers, and density heterogeneity. The nanometer-scale-resolution FIB/SEM images show that various mineral inclusions, clays, and organic matter are dispersed within a volume of few-hundred µm3. Samples from different regions differ sharply in the shape, size, and distribution of pores, solid grains, and the presence of organic matter. Although the samples have clearly distinguishable signatures related to the regions of origin, extremely low permeability is a common feature. This and other pore-scale observations suggest a bounded-stimulated-domain model of a horizontal well within fractured shale that accounts for both compression and adsorption gas storage. Using the method of integral relations, we obtain an analytical formula approximating the solution to the pseudopressure diffusion equation. This formula makes fast and simple evaluation of well production possible without resorting to complex computations. It ss a decline curve, which predicts two stages of production. During the early stage, the production rate declines with the reciprocal of the square root of time, whereas later, the rate declines exponentially. The model has been verified by successfully matching monthly production data from a number of shale-gas wells collected over several years of operation. With appropriate scaling, the data from multiple wells collapse on a single type curve. Pore-scale image analysis and the mesoscale model suggest a dimensionless adsorption-storage factor (ASF) to characterize the relative contributions of compression and adsorption gas storage.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3