Investigating the Impact of Aqueous Phase on CO2 Huff ‘n’ Puff in Tight Oil Reservoirs Using Nuclear Magnetic Resonance Technology: Stimulation Measures and Mechanisms

Author:

Liu Junrong1ORCID,Li Hangyu2ORCID,Liu Shuyang1ORCID,Xu Jianchun1ORCID,Wang Xiaopu1ORCID,Tan Qizhi1ORCID

Affiliation:

1. School of Petroleum Engineering, China University of Petroleum (East China); Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China)

2. SchoolSchool of Petroleum Engineering, China University of Petroleum (East China); Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China) (Corresponding author) of Petroleum Engineering, China University of Petroleum (East China)

Abstract

Summary CO2 huff ‘n’ puff is a promising enhanced oil recovery (EOR) technique for tight/shale reservoirs, also enabling CO2 geological storage. However, the effectiveness of this method can be significantly affected by the aqueous phase resulting from connate water and hydraulic fracturing. The mechanism underlying the influence of the aqueous phase on oil recovery during CO2 huff ‘n’ puff, as well as the corresponding stimulation methods in such scenarios, remain unclear and warrant further study. To investigate this, we utilized a nuclear magnetic resonance (NMR) instrument to track the movement of fluids during CO2 huff ‘n’ puff under water invasion conditions. The impact of the invaded aqueous phase on oil recovery was examined, and the impact of different treatment parameters was explored. The results show that the aqueous barrier formed by water invasion alters the pathway of CO2 diffusion to matrix oil. This alteration leads to a diminished concentration of CO2 in the oil phase, which, in turn, results in a substantial reduction in oil recovery. Consequently, the performance of CO2 huff ‘n’ puff is highly sensitive to the water phase. Nevertheless, the oil recovery dynamics in cyclic CO2 huff ‘n’ puff under water invasion exhibit distinctive patterns compared with those without water invasion. These differences manifest as notable low oil recovery in the first cycle, followed by a rapid increase in the second cycle. This behavior primarily arises from the expulsion of a significant portion of the invaded water from the macropores after the first cycle. However, the effectiveness of this mechanism is limited in micropores due to the challenging displacement of trapped water in such pores. Raising the injection pressure mainly boosts oil recovery in macropores, with minimal response in micropores. Yet, the achievement of miscibility does not lead to a substantial improvement in the CO2 huff ‘n’ puff performance, primarily due to the constraints imposed by the limited CO2 dissolution through molecular diffusion Additionally, we have proposed three stimulation mechanisms achieved by lengthening the soaking time under water invasion conditions. First, the prolonged soaking time increases the concentration of CO2 molecules that diffuse into the matrix oil. Second, it promotes the imbibition of the trapped water on the fracture surface into the deeper matrix to alleviate water blockage. Finally, the invaded water in macropores displaces oil in micropores by capillary force during the soaking period.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3