A Comprehensive Study of Proppant Transport in a Hydraulic Fracture

Author:

Blyton Christopher A.1,Gala Deepen P.1,Sharma Mukul M.1

Affiliation:

1. The University of Texas at Austin

Abstract

Abstract The effective placement of proppant in a fracture has a dominant effect on well productivity. Existing hydraulic fracture models simplify proppant transport calculations to varying degrees and are often found to over-predict propped or effective fracture lengths by 100 to 300%. A common assumption is that the average proppant velocity due to flow is equal to the average carrier fluid velocity, while the settling velocity calculation uses Stokes' law. To accurately determine the placement of proppant in a fracture, it is necessary to rigorously account for many effects not included in the above assumptions. In this study, the motion of particles flowing with a fluid between fracture walls has been simulated using a coupled CFD-DEM code that utilizes both particle dynamics and computational fluid dynamics calculations to rigorously account for both. These simulations determine individual particle trajectories as particle to particle and particle to wall collisions occur and include the effect of fluid flow and gravity. The results show that the proppant concentration and the ratio of proppant diameter to fracture width govern the relative velocity of proppant and fluid. Further, the dependencies of settling velocity on apparent fluid viscosity, proppant diameter and the density difference between the proppant and fluid predicted by Stokes' law were found to apply. However, additional effects have been quantified and shown to substantially alter the predictions from Stokes' law. Proppant concentration and slot flow Reynold's number were both shown to modify the settling velocity predicted by Stokes' law, as does the ratio of proppant diameter to slot width. The effect of leak-off was found to be negligible in terms of altering either the settling velocity or the relative velocity of proppant and fluid. The models developed from the direct numerical simulations have been incorporated into an existing fully 3-D hydraulic fracturing simulator. This simulator couples fracture geomechanics with fluid flow and proppant transport considerations to enable the fracture geometry and proppant distribution to be determined. Unlike all previous studies, these effects are included together and so are shown to be inter-dependent, allowing us for the first time to accurately model proppant transport. As noted above, proppant velocities have been accurately determined without simplifying approximations and with all relevant effects included, showing inter-dependence between the different effects. Two engineering fracture design parameters, injection rate and fluid rheology, have been varied to show the effect on proppant placement in a typical shale reservoir. This allows for an understanding of the relative importance of each and optimization of the treatment to a particular application.

Publisher

SPE

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3