Abstract
Abstract
One of the most expensive artificial lift systems in the oil industry is the Electric Submersible Pump (ESP) system, hence the unavoidable need of extending the run life of wells that have installed this system. Following the need of extending the run life, a sand regulator has been designed to protect the pump during shutdowns, and it has been incorporated into traditional sand control configurations to offer extensive protection above and below the pump.
This paper will explain the mechanism of the sand regulator as well as the benefit of installing this system alone above the pump or complemented with a sand control system below the pump. The candidate wells to this integrated solution were selected from MMV (Middle Magdalena Valley) and Putumayo Basins, in Colombia. The wells had sand problems history and it was necessary to review pump designs, pulling reports and sensor parameters. Well conditions such as production, tubing size, and particle size distribution were analyzed to build the best design for every single well. In the design the geometry of the well was assessed to accommodate the cable and CT (Capillary tube) line downhole.
The ADN Field in Colombia is characterized by heavy oil production (API between 13-18°), with fluid production between 1,000-2,000 BFPD, with a viscosity of 270 - 3090 cP @ 122°F, water cuts oscillating depending on the waterflooding effect (Between 1% to 95%) and high fine sand production (200 – 24,000 ppm). The CH Field wells produce between 1,000 – 6,000 BFPD, with API between 17-20°, high water cuts (> 77%) and a high sand production between 100 – 3,000 ppm. The wells selected had other type of sand control and management systems and were highly affected by frequent shutdowns. The Sand Regulator design was installed in 20 wells and was compared with the performance achieved using traditional sand control solutions. After the installation, production has remained stable in all the wells applied, allowing to reduce the PIP of the well of up to 400 psi. Less current consumption has been observed after each shutdown in all the wells, extending the run life of some wells up to double the average. Sensor parameters were analyzed after each pump restart to determine how difficult it was to restart operation after shutdowns.
Compared to the tools installed above the ESP, this sand regulator allows flushing operation through it with flow ranges from 0.5 to 5 bpm. In addition, the unconventional design of this tool has opened the door to a new concept of ESP protection that works in wells with light or heavy oil and can be refurbished or inspected completely without cutting the tool.
Reference12 articles.
1. Developments in petroleum science;Jonathan,2009
2. D.L.
Tiffin
, G.E.King, R.E.Larese and L.K.Britt: "New Criteria for Gravel and Screen Selection for Sand Control," SPE 39437 presented at theSPE Formation Damage Control Symposium, Lafayette, U.S.A., Feb. 18-19, 1998.
3. Modern Sandface Completion Practices Handbook;Ott,2005
4. Sand Control;Penberthy;SPE Series on Special Topics
5. Optmizing Sand Control Design using Sand Screen Retention Testing;Agunloye