Stabilization of Drilling Foams Using Nanoparticles

Author:

Salih Mohamed1,Ahmed Ramadan1,Amani Mahmood2

Affiliation:

1. University of Oklahoma

2. Texas A&M University at Qatar

Abstract

Abstract Foam is the preferred fluid for underbalanced drilling due to its superior hole-cleaning capacity and reduced liquid requirements. However, it must have reasonable stability to function as a drilling fluid under borehole conditions. Unstable foam loses its viscosity and generates drained liquid that causes slugging flow, resulting in temporary overbalance that can damage the formation. This study aims to improve foam stability of aqueous foam using nanoparticles with unique surface properties. Due to their small sizing and large specific surface area, nanoparticles exhibit unique properties. In addition, their surfaces can be modified to display the desired properties for a given application. In this study, bare (NS1) and coated silicon oxide nanoparticles (NS2, and NS3) have been utilized to enhance the stability of foams. A foam circulating flow loop with horizontal pipe viscometers and a vertical drainage testing cell was used to create foams and analyze their characteristics. At 1000 psi, foams with different nanoparticle concentrations and foam qualities were generated. Their rheology and stability were then investigated. A sonicator and laboratory blender were used to mix nanoparticles with water and anionic surfactant to prepare the liquid phase of foams. The hydrostatic pressure distribution at different column depths as a function of time was measured after trapping a fully generated foam in a vertical test cell. Initially, baseline foams without nanoparticles were tested. Later, two types of nanoparticles (bare and coated) were tested at different nanoparticle concentrations (1 to 3 wt%). Increasing the baseline foam quality (in-situ gas volumetric concentration) from 40 to 60% resulted in a significant increase in apparent viscosity and a reduction in liquid drainage. Nanoparticles containing foam also showed similar trends of property changes with foam quality. Besides this, experiments demonstrated the impact of nanoparticles on the characteristics of foams. The viscosity and stability of foams increased with the addition of nanoparticles. Also, the drainage of foams noticeably decreased while their half-life improved with the concentration of nanoparticles. The effectiveness of nanoparticles is also influenced by their type. Silica nanoparticles that are coated (functionalized) with an amino group (NS2) provide better foam stability than regular nanoparticles (NS1) and nanoparticles treated (coated) with silane (NS3). This study contributes to the formulation of a new generation of drilling foams that can be used in harsh borehole environments where foam instability becomes a major concern.

Publisher

SPE

Reference43 articles.

1. Rheological behavior of aqueous foams at high pressure;Akhtar;Journal of Petroleum Science and Engineering,2018

2. The effect of nanoparticle aggregation on surfactant foam stability;AlYousef;Journal of colloid and interface science,2018

3. Emulsions stabilised solely by colloidal particles;Aveyard;Advances in Colloid and Interface Science,2003

4. A network simulation for drainage of static foam columns;Bhakta;Langmuir,1991

5. Decay of standing foams: drainage, coalescence and collapse;Bhakta;Advances in colloid and interface science,1997

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3