Bayesian Probabilistic Decline-Curve Analysis Reliably Quantifies Uncertainty in Shale-Well-Production Forecasts

Author:

Gong Xinglai1,Gonzalez Raul1,McVay Duane A.1,Hart Jeffrey D.1

Affiliation:

1. Texas A&M University

Abstract

Summary Several analytical decline-curve models have been developed recently for shale-gas wells (Ilk et al. 2008; Anderson et al. 2010; Valko and Lee 2010). However, these authors did not quantify the uncertainty in production forecasts and reserves estimates. This is important because most shale plays are in the early stages of production and virtually any method will have large uncertainty when there are limited production data available. Jochen and Spivey (1996) and Cheng et al. (2010) developed bootstrap methods that can generate probabilistic decline forecasts and quantify reserves uncertainty. Hindcasts with the modified bootstrap method (MBM) (Cheng et al. 2010) provide good coverage of the true cumulative production. However, the authors did not show they can quantify reserves uncertainty with limited production data in unconventional plays. In this paper, we introduce a Bayesian probabilistic methodology using Markov-chain Monte Carlo (MCMC) combined with Arps' decline-curve analysis. We tested this model on two data sets: Barnett shale horizontal-well gas production with more than 7 years of history and Eagle Ford shale horizontal-well oil production with more than 1 year of history. In both cases, P50 hindcasts were very close to true cumulative production and P90 and P10 hindcasts quantified the cumulative production uncertainty reliably with as little as 6 months of production available for matching. In this Bayesian methodology, the decline-curve parameters qi, Di, and b are assumed to be random variables instead of parameters to be modified to obtain a best fit. A Markov chain of the decline-curve parameters is constructed by use of MCMC with the Metropolis algorithm (random walk). We developed the model by performing hindcasts with the Barnett case study consisting of 197 horizontal gas wells with more than 7 years of production. The prior distribution, proposal distribution, and likelihood function were calibrated so the probabilistic decline curves quantified the cumulative-production uncertainty reliably with as little as 6 months of data. The same model was then tested with analysis of Eagle Ford shale oil production from 536 wells; the probabilistic decline curves quantified the cumulative-production uncertainty reasonably well by changing only the prior distribution. The proposed Bayesian methodology provides a means and a workflow to generate probabilistic decline-curve forecasts and quantify reserves uncertainty in shale plays quickly and reliably. This Bayesian methodology can also be applied with other analytical decline-curve models if desired.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3