Field Trial Results for New Sand Control Technology for Water Injectors

Author:

Fipke Steven1,Charles J. E.2,Green Annabel1

Affiliation:

1. Tendeka

2. Shell

Abstract

Abstract In 2014, an R&D project was intitiated to develop an innovative technological solution to improve the performance and reliability of Deepwater Gulf of Mexico assets. The objective was to increase the life expectancy of Miocene and Lower Tertiary water injection (WI) wells, several of which had suffered a severe loss of injectivity within only a few years of completion. Before scoping out the project, an internal study was conducted to compile and analyse the available data. The root problem was identified as an accumulation of formation solids inside the lower completion; principally fine matrix sand that had been pulled in from the reservoir. These formation solids are normally stationary during steady injection, but can be mobilized during shut-ins (maintenance, pump problems, environmental conditions, etc.) due to powerful transient flow effects such as back-flow, cross-flow and even water-hammer. Eventually, enough solid fill can accumulate inside the lower completion as to diminish the injection rates. At this point the operator must consider some very expensive options such as to sidetrack or re-drill a new injector well. The obvious solution to this problem was to find a way to prevent the fine material from getting inside the completion. The challenge was to do so while sustaining high injection rates, with no loss of injection pressure or requirement for additional horsepower. Therefore, the goal of the project was to find a practical, efficient method of stopping the formation material from entering the lower completion during a shut-in cycle. To achieve this, a new flow control device (FCD) and completion system was developed with intrinsic non-return valves (NRV) that are designed to prevent any back-flow or cross-flow during the shut-ins. Also, depending on well conditions, the system will minimize the damaging effects of water-hammer: rapid, high-amplitude pressure cycles that can occur during a sudden stoppage of flow.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3