Critical Issues in CO2 Capture and Storage: Findings of the SPE Advanced Technology Workshop (ATW) on Carbon Sequestration

Author:

Imbus Scott William1,Orr Franklin M.2,Kuuskraa Vello Alex3,Kheshgi Haroon4,Ben-Naceur Kamel5,Gupta Neeraj6,Rigg Andy7,Hovorka Susan8,Myer Larry R.9,Benson Sally M.9

Affiliation:

1. Chevron ETC

2. Stanford University

3. Advanced Resources International, Inc.

4. ExxonMobil Research & Engineering Company

5. Schlumberger

6. Battelle Memorial Institute

7. CO2CRC

8. Bureau of Economic Geology

9. Lawrence Berkeley Laboratory

Abstract

Abstract Carbon dioxide capture and storage (CCS) is emerging as a key technology for greenhouse gas (GHG) mitigation. The Society of Petroleum Engineers (SPE) Applied Technology Workshop (ATW) on CO2 Sequestration (Galveston Island, Texas, Nov. 15–17, 2005) convened a diverse group of geoscience, engineering, economics and stakeholder experts to review the status of CCS and to identify the remaining critical issues that still serve as barriers to its acceptance and widespread deployment. Site assessment can be improved with systematic, generally accepted approaches that identify and focus on injection, capacity and containment risks. Reservoir simulation models can be adapted from oil and gas applications but further experimental work and code development are needed to quantify the role of major CO2 trapping mechanisms. Enhanced hydrocarbon recovery accompanying injection of CO2 is well established for CO2 EOR but its efficacy in EGR and ECBM is unclear. Well integrity, a key vulnerability in CO2 storage, should be addressed through modified well materials and construction approaches and cost effective remediation and intervention techniques. Field management issues, including risk assessment and monitoring, would benefit from development of accepted practices to apply through project lifecycle. Overall, the Workshop participants concluded that implementation of CCS, in a timely manner, represents a complex challenge that requires coordination of technical expertise, economic incentives, appropriate regulations and public acceptance. Storage assessment tools are available and adequate, although in need of refinement and standardization. Capture technology, however, requires more intense research aimed at new technologies and deep cost reduction. Infrastructure and regulatory development needs to reflect expectations and incentives from government bodies. Early implementation of CCS is expected to focus on the gas processing and other industries that produce high purity CO2 with storage in local hydrocarbon reservoirs or saline aquifers. Deployment at a scale required to substantially reduce CO2 atmospheric concentrations, however, would rely heavily on injection into saline formations and take decades of investment to build the extensive infrastructure required to capture and transport CO2 to injection sites. The ATW gathering was a unique, timely opportunity to engage experts in an assessment of the status and best path forward for CCS. Introduction Current and projected rates of CO2 emissions from fossil fuels may lead to changes in global climate with significant impact. Whereas improved energy efficiency and renewable energy will play growing roles in this century, fossil fuels will continue to meet the majority of energy needs for decades to come (IEA/OECD World Energy Outlook 2004). Even with technical advances and changes in the energy mix and its efficient use, there is an expanding gap over the present century between projected emissions and those emissions levels needed to stabilize atmospheric CO2 to desired levels (Edmonds et al., 2004)1.

Publisher

SPE

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CO2 Underground Storage and Wellbore Integrity;Risk Analysis for Prevention of Hazardous Situations in Petroleum and Natural Gas Engineering;2014

2. Carbon Capture and Storage;Managing CO2 Emissions in the Chemical Industry;2010-10-21

3. Brine/CO2Interfacial Properties and Effects on CO2Storage in Deep Saline Aquifers;Oil & Gas Science and Technology – Revue de l’Institut Français du Pétrole;2010-05-20

4. Characteristics of CO2 sequestration in saline aquifers;Petroleum Science;2010-02-04

5. References;Enhanced Oil Recovery;2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3