Predictive Analytical Solution to Permeability in Horizontal Wells from Multi Probe Production Logging and Flowing Gauge Data

Author:

Peesu Rathnakar Reddy1,Voleti Deepak Kumar1,Dike Nnamdi1,Al Ameri Sara1

Affiliation:

1. ADNOC Onshore

Abstract

Abstract Log permeability for reservoir models is generally sourced from core measurements by calibrating to well-test permeability. Conventional approaches are challenged in carbonate reservoirs due to complex depositional and diagenetic alterations. The calibration to well test usually has the basis of pressure buildup (PBU) analysis from limited pilot holes. Horizontal drilling enhanced reservoir recoveries by horizontal drain holes instead of vertical producers. The certainty of a robust permeability model is scrutinized in history matching at the horizontal drain holes. Therefore, it is mandatory to reconcile the log permeability to drawdown permeability in horizontal drain holes by honoring measurement path. The measurement path brings in noticeable effects to permeability in heterogeneous carbonate reservoirs if it is pressure build up or pressure drawdown. The objective of paper is to demonstrate a solution to permeability estimation by sensitizing measurement type, scale, path, and environment in horizontal wells. An analytical workflow is developed with field examples by integrating Multi-Probe production logging (PLT) with downhole gauge data while flowing. The prerequisites are to have gauge data for a sustained and stable flow period followed by a long shut in for pressure build up. Thereafter, Multi-Probe production logging was acquired for flowing passes and shut-in passes. In general, pressure transient behavior in horizontal well is mathematically represented by pressure diffusivity equation (Goode & Thambynayagam, 1987) with four possible flow periods. An automated process is programmed in python to detect transient flow regime from gauge data. This denotes the possible flow regime with a characteristic slope which represent the transient conditions during production logging. Multi-Probe PLT data is processed for inflow profile and zonal contributions from velocity and holdup profile conforming to reservoir flow units interpreted in vertical pilot well. Drawdown permeability is estimated from the solutions to pressure diffusivity equation based on estimated downhole fluid rates, identified flow regime and boundary conditions. A discrete drawdown permeability from PLT flow profile is estimated as per transient flow regime in horizontal drain holes of a heterogeneous carbonate reservoir. Reconciliation of log permeability with drawdown permeability distinguished prominent flow units in the reservoirs. The results highlighted the critical pitfalls in static to dynamic reconciliation related to reservoir heterogeneity, measurement path, apparent skin variation across flow units and multi-phase effects. The workflow had overcome averaging nature of PBU permeability and the data scarcity in terms of PBU in vertical pilot wells. The demonstrated solution involves an automated process to quickly detect flow regime and highlights the integration of prior gauge survey with production logging results. The merit of the solution is to detect baffles and to investigate performance of high permeability streaks across drain holes by reconciling log permeability with flow-calibrated drawdown permeability. The analytical workflow is pragmatic for reducing uncertainty in permeability distribution by capturing core scale heterogeneity and honoring transient production behavior.

Publisher

SPE

Reference16 articles.

1. Permeability Estimation: The Various Sources and Their Interrelationships;Ahmed;J Pet Technol,1991

2. Production Logging as an Integral Part of Horizontal-Well Transient-Pressure Test;Ahmed;SPE Form Eval,1993

3. Productivity of a Horizontal Well;Babu;SPE Res Eng,1989

4. Fluid flow through granular beds;Carman;Transactions, Institution of Chemical Engineers, London,1937

5. The Producibility Answer Product;Coates;The Technical Review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3