Laboratory Evaluation of Static and Dynamic Sag in Oil-Based Drilling Fluids

Author:

Ofei Titus Ntow1,Kalaga Dinesh Venkata2,Lund Bjørnar3,Saasen Arild4,Linga Harald3,Sangesland Sigbjørn5,Gyland Knud Richard6,Kawaji Masahiro2

Affiliation:

1. Norwegian University of Science and Technology (Corresponding author; email: titus.n.ofei@ntnu.no)

2. City College of New York

3. SINTEF

4. University of Stavanger

5. Norwegian University of Science and Technology

6. M-I SWACO, Schlumberger Norge AS

Abstract

Summary In this paper, we present the results of barite sag measurements before and after hot-rolled oil-based drilling fluids (OBDFs) using different approaches for characterization. We characterized the barite sag of a liquid column under static condition using light-scattering (LS) measurements, hydrostatic pressure measurements, and gamma densitometry. Under the dynamic condition, we used a rheometer with a grooved bob-in-cup measuring system to characterize barite sag in rotational and oscillatory shear conditions. Extensive rheological characterization of the drilling fluid samples, before hot rolling (BHR) and after hot rolling (AHR), is carried out. It is found that barite sag decreased in hot-rolled fluid samples from the LS, rotational, and oscillatory shear measurements. The rheological characterization of the fluid samples showed that heat-activated chemicals in the hot-rolled fluid sample increased the viscosity and elasticity, which contributed to lower barite sag and longer suspension of particles than BHR. Both hydrostatic and gamma densitometry measurements reveal more or less uniform compaction of barite particles in the fluid sample below the liquid layer. Time-dependent oscillatory shear measurements provide new insights on the structural character of drilling fluids to predict barite sag tendencies during the fluid design phase.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3