Simplified Calculation of CACO3 Saturation at High Temperatures and Pressures in Brine Solutions

Author:

Oddo John E.1,Tomson Mason B.1

Affiliation:

1. Rice U.

Abstract

Summary A simplified method to calculate CaCO3 saturation is developed using only commonly measured field parameters. The calculated saturation index, Is, and pH values are accurate at high temperatures and pressures in brines and are compared with less sophisticated and more complex calculations. The final forms of Is and pH calculations are derived using conditional equilibrium constants dependent on temperature, pressure, and ionic strength. which eliminate the need for activity coefficients. The Is equation is presented in forms for calculation with known or derived pH and where the pH of the solution is unknown. Practical application of Is is shown by calculating the scaling tendency of several geopressured energy wells of the U.S. gulf coast region. Introduction Calcium carbonate (CaCO2) precipitation has been and continues to be a problem in aqueous systems. Calcium carbonate scale, although present at all temperature/pressure regimes, is most prevalent at high temperatures and pressures, where CaCO3 solubility is decreased with the increased temperature. Less sophisticated methods for determining scaling tendency, such as the Langelier and Stiff-Davis Is's, have built-in constraints when considering closed aqueous systems. With both methods the solution pH must be known to begin the calculations. There is no technique for reliable pH measurement at high temperatures and pressures. Neither method can account for pressure changes in the system or the changing solubility of CO2(g) with temperature or pressure. The Stiff and Davis constant K is not known above 194 degrees F. The method presented in this paper follows the Stiff and Davis method very closely at temperatures in range of the Stiff and Davis calculation and at known pH. Table 1 is a comparison of the Is presented here and the Stiff and Davis Is for four oilfield brines. 4 The method enables calculations of pH, if not known, and considers total pressure as well as varying CO2(g) partial pressures from commonly measured variables in the field-i.e., total calcium, bicarbonate alkalinity, ionic strength, temperature, pressure, and the mole fraction of CO2 in the gas phase. An effort has been made throughout the paper to maintain the resulting algorithm so it is simple enough to perform easily in the field with a handheld calculator. More complex computer codes exist for the calculation of CaCO3 scaling tendencies in aqueous systems at high temperatures and pressures, but these are constrained by the need for mainframe computers, complex codes, and large data bases. A sophisticated code, EQUILIB, developed by Shannon et al. requires computer facilities and takes pressure into account. This offers an opportunity to check the calculations presented here. Shannon et al. present two examples of results, an unflashed and a flashed brine, in their paper. The results and a comparison with Is presented in this paper are presented in Table 2, and good agreement with the more complex calculations is demonstrated. Calculation of Is The calculation of Is in brines involves changing chemical equilibria in solutions of interest with temperature, pressure, and ionic strength. The changing equilibria in the solutions can be dealt with by allowing the equilibrium constants in the governing chemical equations to vary with the changing conditions of the brines. The equilibrium constants then become conditional constants whose values depend on temperature. pressure, and ionic strength. JPT P. 1583^

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3