Geomechanics Insights for Successful Well Delivery in Complex Kutch - Saurashtra Offshore Region

Author:

Talreja Rahul1,Bahuguna Somessh1,Kumar Rajeev1,Zacharia Joseph1,Kundan Ashani2,Kalpande Vikrant2

Affiliation:

1. Schlumberger

2. ONGC Ltd

Abstract

Abstract Subsurface lithofacies sequences encountered in the Kutch & Saurashtra Basin has its own set of challenges brought about due to its complex geological settings. These challenges are related to drilling, logging and completion and demand rigorous planning for the upcoming wells with detailed analysis of hazards associated with the overburden and reservoir rocks. In the study, these challenges are found to be linked with three prime geological sequences. Detailed integrated geomechanical analysis with inputs from drilling parameters, real-time formation experience, geophysical and geological are conducted for the improvement in borehole condition and improvising the effective drilling rate. A customized geomechanical workflow has been adopted to construct Mechanical Earth Model (MEM, Plumb et al., 2000) for strategic wells across the basin. Wellbore stability events related to geomechanics were reproduced and analyzed. The cause of the events was established and mitigatory methods were proposed. In addition, stress orientation along the wellbore trajectory and across the basin was estimated using breakouts identified on images and multi-arm calipers. Fast shear azimuth from Dipole Shear Sonic anisotropy analysis was also integrated to provide more robust and accurate estimates. Wells in the region are characterized by slow ROP, high torque and drag, wellbore instabilities (severe held ups, cavings, stuck pipes, string stalling etc.) and challenges while logging and running casing. The study has characterized these challenges and identified required solutions linked to the three geological sequences - weak Tertiary, Late Cretaceous Deccan Trap and Early Cretaceous to Jurassic clastic formations. The Tertiary formations are relatively weak (UCS∼300 to 1500psi) and prone to sanding and cavings due to breakouts. MEM based mud weight window estimation predicts that shear/failure hole collapse can be prevented using 10ppg to 11ppg mud weight. The formations below the Deccan Trap are locally categorized under Mesozoic sequence. The Deccan Trap and Mesozoic formations are extremely hard, tight, extremely stressed, heavily fractured and in some areas are also of HPHT nature. Rock strength shows a wide variation (UCS ∼5,000psi to 25,000psi) making bit selection a difficult task. Borehole failure is complex and cuttings analysis shows the signature of both shear and weak plane failure. Fractures on the image logs, rotation of breakouts, and fast shear azimuth support this theory. Mixing fracture sealing agents along with the use of optimal mud weights is found to be the most likely drilling solution. The understanding developed in the region and implementation of recommended steps assisted in successful drilling of two recent wells wherein gun-barrel shape borehole condition in both Tertiary and the Mesozoic sequence was achieved. The non-productive time was reduced by nearly 40 days increasing the effective ROP by 40%. In addition, smooth borehole prevented any major issues while carrying out casing and cementing operations.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3