Technology Update: Big Data for Advanced Well Engineering Holds Strong Potential To Optimize Drilling Costs

Author:

Rossi Nicola1,Michelez Jean1,Concina Fabio1

Affiliation:

1. kwantis

Abstract

Technology Update Considering the significant weight of drilling costs in upstream ventures, saving even a few hours of drilling could lead to substantial cost savings on the overall capital expenditures (Capex). Thanks to the big data revolution, cost optimization still has strong potential in drilling operations. Traditionally, drilling performance has been addressed through the analysis of drilling reports written once a day by the operator’s staff. However, high-frequency data are already collected continuously by surface and downhole sensors to address operational safety and continuity. These data contain a huge amount of valuable information that can be used for drilling operations performance analysis (Fig. 1). High-frequency data analysis allows a new level of performance monitoring through the identification of potential invisible lost time and the anticipation of well problems that could be minimized to reduce drilling costs. Data Valorization, Combination More than 60 sensors record high-frequency data during drilling, creating sets of millions of data for a single well. These data can be reprocessed through a set of algorithms to identify each single activity with the highest possible level of accuracy and granularity. As an example, reaming is based on the following seven surface logging parameters: bit depth, well depth, rate of penetration (ROP), weight on bit (WOB), torque, mud flow-in, and standpipe pressure. However not all activities can be automatically detected through surface log-data interpretation. It they cannot be, daily reporting becomes a relevant source of information. Thus, a set of preeminence rules is applied so that the most relevant data can be used and combined as needed at any time to build a complete and precise time breakdown for the analysis of drilling and flat time. This innovative approach is the basis of the Integrated Drilling Data Discovery (ID3) system, developed by kwantis. ID3 manages one single big-data platform to integrate surface logging data with reporting information (e.g., daily drilling reports and bit reports) and measures lithology, trajectories, and other key data while drilling to create a complete set of drilling performance analyses. The system is able to break down the drilling sequence to the most detailed activities (e.g., bit on bottom, reaming, circulating, or on slip) with a 5-seconds accuracy. The information regarding phases, troubles, and equipment are provided by the daily reporting and plotted on the common time or depth bases to create meaningful analytics on a single well or group of offset wells. The applications of these analyses are multiple and provide new capabilities at any stage of the well life cycle: planning, operating, or post-well analysis.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3