Airborne Trace Gas Remote Sensing and Surface Mobile In Situ: A Novel Tool for the Study of Structural Geological Controls from a Producing Oil Field

Author:

Leifer Ira1ORCID,Melton Christopher2,Tratt David M.3,Buckland Kerry N.3

Affiliation:

1. Bubbleology Research International (Corresponding author)

2. Bubbleology Research International

3. The Aerospace Corporation

Abstract

Summary Accurate and representative determination of greenhouse gases (GHG) from oil and gas (O&G) production facilities requires high-spatial-resolution data, which can be acquired by airborne imaging spectrometers. However, assessment of nonmethane hydrocarbon emissions, which are far less amenable to remote sensing, requires mobile surface in-situ measurements (e.g., a mobile air quality laboratory). Field in-situ measurements and airborne thermal infrared spectral imagery were acquired for three producing California oil fields (Poso Creek, Kern Front, and Kern River) located next to each other on 14 September 2018. In addition, a profile ascending a nearby mountain collected in-situ data for the Round Mountain oilfield. Plume methane to ethane ratios were consistent within different regions of the field and differed between these fields in a manner related to field geological structures. Data acquired by an airborne thermal infrared imaging spectrometer, Mako, in 2015 and 2018 showed most emissions were from distant plumes in the Kern Front and Poso Creek fields. The spatial distribution of detected plumes was strongly related to faults, particularly active faults, which are proposed to stress infrastructure, leading to higher fugitive emissions and/or emissions from natural migration pathways (seepage). Additionally, the spatial distribution of detected plumes suggested unmapped faults. Thus, high-sensitivity imaging spectroscopy can improve understanding of reservoir geological structures that impact hydrocarbon migration and field operations, highlighting the potential for a novel reservoir management tool.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology,General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3