Pulsed Nuclear Magnetic Resonance Studies of Porosity, Movable Fluid, and Permeability of Sandstones

Author:

Timur A.1

Affiliation:

1. Chevron Oil Field Research Co.

Abstract

The NMR methods described here provide a rapid, nondestructive determination of porosity, movable fluid, and permeability of sandstone. Introduction Fluid flow properties of porous media have long been of interest in such varied disciplines as geology, geophysics, soil mechanics, and chemical, civil, and mechanical engineering. This interest has resulted in numerous models of porous media that have been proposed, tested, and found to be useful under, at proposed, tested, and found to be useful under, at best, only special circumstances. A critical review of most of these models is given by Scheidegger. The application of each new tool to the study of porous media has helped to test some of the existing porous media has helped to test some of the existing theories and to form neat ideas based on the new parameters being measured. In the application of parameters being measured. In the application of nuclear magnetic resonance (NMR) techniques to the study of the properties of fluids in porous media, the theoretical studies of Korringa et al. resulted in a model for the relaxation of spin polarization of protons in a hydrogenous fluid in a pore of a solid. protons in a hydrogenous fluid in a pore of a solid. Seevers verified this model, established a method for measuring the surface-to-volume-ratio distribution in a porous medium, and proposed a technique for determining specific permeability in sandstones. In the present investigation, the uses of NMR methods are extended and a simple model of porous media is developed from an analysis of pulsed NMR measurements. In tills model, the pore spaces of a porous medium are divided into three groups on the porous medium are divided into three groups on the basis of their surface-to-volume ratios. To evaluate predictions of the NMR model, laboratory predictions of the NMR model, laboratory measurements of spin-lattice relaxation time, porosity, permeability, and residual (irreducible) water saturation permeability, and residual (irreducible) water saturation were conducted on more than 150 sandstone samples obtained from four oil fields in North America. Applications are discussed for estimating the volume of movable fluid, and the specific permability, k, of sandstone samples. The former permability, k, of sandstone samples. The former parameter, which can be considered as producible porosity, parameter, which can be considered as producible porosity, is expressed by ..........................................(1) where is porosity in percent of bulk volume and Swr is the residual (irreducible) water saturation in percent of pore volume at a capillary pressure of 50 percent of pore volume at a capillary pressure of 50 psi. psi. Fast nondestructive laboratory methods are described for determining porosity, movable fluid, and permeability of sandstone samples from permeability of sandstone samples from measurements with a pulsed NNM (spin-echo) apparatus. Procedures are given for adapting these methods to Procedures are given for adapting these methods to samples of irregular shape and small size. Theory General In the Korringa, Seevers, and Torrey (KST) model the observed decrease in the spin-lattice relaxation time, T1, of protons of a hydrogenous liquid contained in the pore spaces of a porous solid is attributed to an increase in the correlation time for the random motion of the water molecules and to the presence of paramagnetic centers at the liquid-solid presence of paramagnetic centers at the liquid-solid interface. JPT P. 775

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3