An Experimental Study of Gas Influx in Oil-Based Drilling Fluids for Improved Modeling of High-Pressure, High-Temperature Wells

Author:

Torsvik Anja1,Skogestad Jan Ole1,Linga Harald1

Affiliation:

1. DrillWell/SINTEF Petroleum Research

Abstract

Summary Oilfield exploration in extreme areas represents additional requirements for drilling-fluid performance and hydraulic models for well control. In general, there is little knowledge about the drilling-fluid properties at high-pressure/high-temperature (HP/HT) conditions, and kick models are based on extrapolation of fluid properties from moderate pressures and temperatures. To verify the validity of extrapolation to downhole HP/HT conditions, increased knowledge about the drilling-fluid behavior under these conditions is required. In this work, we have experimentally determined the effect of gas absorption on saturation pressure, density, and viscosity at temperatures up to 200°C and at 1,000 bar. We provide accurate measurements of methane solubility in two oil-based drilling fluids (OBDFs), which both have the same composition except for the type of base oil (BO). One is based on a refined normal mineral oil, and the other is based on a linear paraffin. For various CH4/OBDF combinations, density and viscosity are measured at pressures and temperatures ranging from standard conditions to HP/HT. The two OBDFs reveal similar flow behavior, but the one that is based on a linear paraffin oil has a stronger gel structure and a stronger shear-thinning effect. This fluid enters the dense-phase region at a lower pressure, and is accordingly able to absorb more gas at a lower pressure than the fluid with a normal mineral oil. Results have been used to validate computational predictions. It is shown that the experimental results form an important basis for tuning the software model to fit the thermodynamic properties of gas-loaded drilling fluid at HP/HT conditions.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3