Digital Transformation Increases Value in an Omani Thermal EOR Asset

Author:

Carpenter Chris1

Affiliation:

1. JPT Technology Editor

Abstract

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 190419, “Increasing Value Through Digital Transformation: A Case Study From the A Field EOR Asset, Sultanate of Oman,” by S. Holyoak, SPE, A. Alwazeer, S. Choudhury, M. Sawafi, A. Belghache, T. Aulaqi, SPE, S. Bahri, R. Yazidi, A. Yahyai, and K. D’Amours, Petroleum Development Oman, prepared for the 2018 SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman, 26–28 March. The paper has not been peer reviewed. A thermal asset in Oman is characterized by a large-scale steam-drive/cyclic-steam-soak (CSS) development project, underpinned by extensive data gathering. Efficient execution of data management and analysis within a visualization-intensive, collaborative work environment is critical to success. In this paper, the authors aim to demonstrate that working in this manner enables rapid identification and execution of cost-effective optimization opportunities and risk reduction. Introduction The A West and A East fields are located in the south of Oman. Thick, high net-to-gross sandstones belonging to the Haima Group form the main reservoir unit. The targeted Haima oil is heavy, with viscosities increasing with depth, and reaching up to 400 000 cp close to the oil/water contact (OWC) at the A East field. Following 25 years of cold production at A West, a development plan addressing thermal redevelopment for both fields was approved in 2009. In A West, a steam-drive pilot began in 2008, whereas, in A East, with its limited production history, CSS was selected for initial production and started in 2014. Thermal development is characterized by operational complexity and high well counts. Currently, almost 500 wellbores exist in A Field (including sidetracks). The wells are closely spaced, typically 50–100 m at the top reservoir level. Expansion and infill of the development is ongoing, and the well count is increasing steadily. A challenging environment exists for maximizing oil recovery in a safe, manpower-efficient, and cost-effective manner. On an annual basis, the asset’s decision-based surveillance plan is reviewed, challenged, and updated as required. The execution of this plan, together with incorporation of the field’s reservoir-performance data, translates to a significant amount of diverse information acquired on a daily basis. A combination of highly visual tools and innovative processes is used in a cross-disciplinary work environment to facilitate effective management and analysis of this data. Data Collection and Transmission This section provides three examples of current methods used to acquire and transmit data related to A Field’s reservoir integrity, thermal response, and production metrics. Microseismic. Microseismic wells are being used in other thermal-development projects to monitor for fracturing and fault reactivation. Typically, an array of geophones is cemented into a dedicated wellbore with a data-transmission cable to surface. A microseismic event created by induced fracturing, for example, is detected by the geophones across one or more monitoring wells. Signal processing allows the location, magnitude, and character of the events to be derived. To assess the feasibility of replicating this approach in A Field, additional modeling was carried out, varying the number and placement of the monitoring wells. This showed that the main development areas of A West and A East fields could be covered with six microseismic wells, with three in each field. Furthermore, modeling indicated favorable detection thresholds and event accuracy with this six-well scenario.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3