Asphaltene Precipitation: A Review on Remediation Techniques and Prevention Strategies

Author:

Al-Qasim Abdulaziz1,Al-Anazi Amer1,Omar Abdulrahman Bin1,Ghamdi Muataz1

Affiliation:

1. Saudi Aramco

Abstract

Abstract In the last few years, large efforts have been made to develop advanced and smart technologies that can predict and prevent asphaltene precipitation. In the history of asphaltene deposition science, two schools of thought have emerged to predict the phase behavior of asphaltene. One school uses colloidal science techniques, believing that asphaltene exists in oil at a colloidal state. The other school adopts thermodynamic methods, believing that the asphaltene occurs in oil in a true liquid state. The main drawdowns of asphaltene deposition in some reservoirs that are prone to asphaltene precipitation are the alteration of reservoir rock's wettability, and the plugging of the formation, flowlines and separation facilities. Different production strategies have been developed to eliminate or reduce the asphaltene precipitation. As asphaltene properties are dependent on its composition, as well as the reservoir temperature and pressure, thermodynamic and kinetic control strategies are utilized to control the pressure and temperature of the system or the conditions of solid formation. Common intervention techniques include stimulating the well periodically using a mixture of acid, xylene, and mutual solvent. Advancement in the asphaltene flocculation-inhibitor treatments allows it to be used in treating the asphaltene in the reservoir without damaging the formation. There are some limitations and environmental restrictions on the current conventional intervention techniques associated with using low flash-point chemicals. These limitations can be resolved by using environmentally friendly techniques, such as laser energy to disturb asphaltene particles. This paper will discuss the asphaltene precipitation and deposition phenomena, preventive and detection techniques, and intervention methods and their limitations, providing a comprehensive overview on the current practice in asphaltene remediation and prevention.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3