Calcium Sulfate Scaling Risk and Inhibition for a Steamflood Project

Author:

Zhang Fangfu1,Hinrichsen Charles J.2,Kan Amy T.1,Wang Wei2,Wei Wei2,Dai Zhaoyi1,Yan Fei1,Liu Ya1,Bhandari Narayan1,Zhang Zhang1,Ruan Gedeng1,Tomson Mason B.1

Affiliation:

1. Rice University

2. Chevron

Abstract

Summary Steamflooding is a widely used technique for heavy-oil recovery. Scale control during steamflooding, however, can be challenging because the high temperature of the steamflood can decompose thermally unstable inhibitors and/or lead to the precipitation of metal-inhibitor pseudoscale. In this paper, we present the analysis of the scaling risk and scale inhibition for a pilot steamflood project in a Middle Eastern oil field. The formation of this field is a dolomite formation interbedded with anhydrite (CaSO4) streaks. Anhydrite has been observed to be the predominant scale form. Anhydrite scale was presumably formed by the increased production-system temperature resulting from steamflooding and/or the mixing of steam condensate with connate water at equilibrium with calcium sulfate minerals at lower temperature and higher solubility. Anhydrite is inherently difficult to control because of its high solubility and the high-temperature (HT) conditions under which it forms. Compared with barite and calcite, only limited knowledge has been acquired for anhydrite control. To predict the scaling tendency and inhibitor need in different wells of this field with different supersaturation levels and temperatures, a scaling-risk model has been developed. To build such a model, detailed and revised laboratory procedures have been developed to study nucleation and precipitation kinetics of anhydrite at 125–175°C, different supersaturation, different water composition, and long reaction time. Predictions of this scaling-risk model suggest a saturation index (SI) of 0.8 as a critical SI for anhydrite control at >125°C. For example, when the SI is above 0.8, anhydrite will be difficult to control in the presence of threshold inhibitor. Model predictions were benchmarked with the water-chemistry data from a total of more than 20 wells from this field, and were found to be consistent with field observations of scale occurrence in different wells. With the recommended inhibitor concentrations, anhydrite scale has been controlled in this field, which provides validation that the proposed scaling-risk model is a powerful tool to optimize the scale-treatment plan for anhydrite.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3