The Unsteady-State Nature of Sorption and Diffusion Phenomena in the Micropore Structure of Coal: Part 1 - Theory and Mathematical Formulation

Author:

Kolesar J.E.1,Ertekin Turgay2,Obut S.T.2

Affiliation:

1. Conoco Inc.

2. Pennsylvania State U.

Abstract

Summary A single-phase, 1D mathematical formulation is developed in radial/cylindrical coordinates to examine unsteady-state micropore sorption in a composite micropore/fracture, coalbed-methane transport problem. In the formulation, the micropore transport equation accounts for unsteady-state sorption and diffusion in the primary porosity. Gas entering the fracture network is considered a source term in the fracture-transport equation. The micropore and fracture systems are coupled by equating the gas pressure at the surface of the micropore elements to the pressure in the fracture network. Introduction Coalbed-methane reservoirs are characterized by a dual-porosity nature. Gas molecules stored in the micropore structure by adsorption are subject to desorption from the coal grain surfaces and to diffusional transport to a well-defined, natural fracture network. Laminar flow dominates in the fracture network where methane gas flows simultaneously with formation water. Gas transport in the micropores is generally modeled with quasisteady- or unsteady-state sorption formulations. In the first case, the matrix-to-fracture gas transfer rate is calculated from the average concentration gradient in the matrix elements over a discrete timestep. In contrast, unsteady-state formulations use a nonuniform micropore concentration gradient to determine the matrix transfer rate. Quasisteady-state models offer the advantage of simplified mathematics, which can reduce computer simulation costs. Reservoir Characteristics of Coal Seams. Coal seams are characterized by a natural fracture network commonly referred to as cleat. The cleat system consists of two perpendicular fissures, the more predominant of which is the face cleat. The butt cleat is less continuous and often ends when it intersects the face cleat. Fig. 1 is a highly idealized representation of the physical relationship between the matrix and fracture system.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3