From Straight Lines to Deconvolution: The Evolution of the State of the Art in Well Test Analysis

Author:

Gringarten Alain C.1

Affiliation:

1. Imperial College London

Abstract

Summary Well test analysis has been used for many years to assess well condition and obtain reservoir parameters. Early interpretation methods (by use of straight lines or log-log pressure plots) were limited to the estimation of well performance. With the introduction of pressure-derivative analysis in 1983 and the development of complex interpretation models that are able to account for detailed geological features, well test analysis has become a very powerful tool for reservoir characterization. A new milestone has been reached recently with the introduction of deconvolution. De-convolution is a process that converts pressure data at variable rate into a single drawdown at constant rate, thus making more data available for interpretation than in the original data set, in which only periods at constant rate can be analyzed. Consequently, it is possible to see boundaries in deconvolved data, a considerable advantage compared with conventional analysis, in which boundaries often are not seen and must be inferred. This has a significant impact on the ability to certify reserves. This paper reviews the evolution of well test analysis techniques during the past half century and shows how improvements have come in a series of step changes 20 years apart. Each one has increased the ability to discriminate among potential interpretation models and to verify the consistency of the analysis. This has increased drastically the amount of information that one can extract from well test data and, more importantly, the confidence in that information.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3