Online Monitoring of Inner Deposits in Crude Oil Pipelines

Author:

Giro Riccardo1ORCID,Bernasconi Giancarlo2ORCID,Giunta Giuseppe3,Cesari Simone3

Affiliation:

1. Politecnico di Milano (Corresponding author)

2. Politecnico di Milano

3. Eni S.p.A

Abstract

Summary The formation of deposits is a very common issue in oil and gas pipeline transportation systems. Such sediments, mainly wax and paraffine for crude oil, or hydrates and water for gas, progressively reduce the free cross-sectional area of the pipe, leading in some cases to the complete occlusion of the conduit. The overall result is a decrease in the transportation performance, with negative economic, environmental, and safety consequences. To prevent this issue, the amount of inner deposits must be continuously and accurately monitored, such that the corresponding cleaning procedures can be performed when necessary. Currently, the former operation is still dictated by best-practice rules pertaining to preventive or reactive approaches, yet the demand from the industry is for predictive solutions that can be deployed online for real-time monitoring applications. The paper moves toward this direction by presenting a machine learning methodology that leverages pressure measurements to perform online monitoring of the inner deposits in crude oil trunklines. The key point is that the attenuation of pressure transients within the fluid is dependent on the free cross-sectional area of the pipe. Pressure signals, collected from two or more distinct locations along a pipeline, can therefore be exploited to estimate and track in real time the presence and thickness of the deposits. Several statistical indicators, derived from the attenuation of such pressure transients between adjacent acquisition points, are fed to a data-driven regression algorithm that automatically outputs a numeric indicator representing the amount of inner pipe debris. The procedure is applied to the pressure measurements collected for one and a half years on discrete points at a relative distance of 40 and 60 km along an oil pipeline in Italy (100 km length, 16-in. inner diameter pipes). The availability of historical data prepipe and postpipe cleaning campaigns further enriches the proposed data-driven approach. Experimental results demonstrate that the proposed predictive monitoring strategy is capable of tracking the conditions of the entire conduit and of individual pipeline sections, thus determining which portion of the line is subject to the highest occlusion levels. In addition, our methodology allows for real-time acquisition and processing of data, thus enabling the opportunity for online monitoring. Prediction accuracy is assessed by evaluating the typical metrics used in the statistical analysis of regression problems.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology,General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3