Fracture Conductivity Enhancement; A Key to Unlocking Potential of Unconventional Tight Oil Resources in the UAE

Author:

Elazab Sherif Abdelaziz1,Useche Franklin1,Van Laer Pierre1,Baig Muhammad Zeeshan1,Brooks Trevor1,Al Hashmi Abdulla1,Al Marzooqi Hassan1,Alharthi Amena1,Coscia Marco1,Goiran Pierre Olivier1

Affiliation:

1. ADNOC

Abstract

Abstract Economical hydrocarbons production from unconventional resources is intrinsically related to stimulation effectiveness and capacity of the created hydraulic fractures to drain the target resource in an efficient manner, this is certainly without overlooking the significance of other resource geological, petrophysical, geomechanical, and other rock quality aspects. Considering the unique characteristics of each unconventional resource and the varying rock qualities and geological features, each resource should be considered separately when attempting to define the most optimum stimulation design approach that yields the best well productivity results and best EUR's, this means that a stimulation design approach that was successful in a specific play might not yield the same success if applied in a different play. In general, the overall stimulation effectiveness in unconventional horizontal multi-stage completions requires a good understanding of the geological, petrophysical, and geomechanical characteristics of the asset in hand as well as an understanding of the natural fracture's distribution, rock heterogeneity, and other aspects, eventually integrating those understandings to design an effective stimulation approach that similarly considers cost and operational efficiency parameters. Efficiency of the stimulation treatments requires an optimal placement of perforation clusters, with reasonable spacing that allows for creating the target fracture geometry/complex fracture network while considering fracture interferences, and other geometry controlling aspects. One of the most important considerations when designing a fracture treatment is fracture conductivity which is the ability of fractures to convey produced fluids into the wellbore (fracture permeability multiplied by fracture width (md-ft). In general, fracture conductivity along the created fracture network as well as in the near-wellbore area defines how effective is the fracture in delivering hydrocarbons into the wellbore, the target fracture conductivity values however vary with respect to formation rock permeability ranges and nature of produced fluids. This paper presents a comparative study of fracturing design and operational execution approaches for two exploration wells drilled in the oil-bearing Shilaif unconventional formation in the UAE, both wells are drilled targeting the same rock sequence and both possess very similar rock qualities. The paper covers aspects studied to analyze the suboptimal performance of the first well and the adjustments made to the fracturing design and fracture conductivity improvement of the second well, and how it entirely changed the productivity profiles and significantly improved the EUR for the target resource, which in turn had made this asset much more attractive for future full development plans.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3