Equilibrium Revaporization of Retrograde Condensate By Dry Gas Injection

Author:

Smith Lowell R.1,Yarborough Lyman1

Affiliation:

1. Pan American Petroleum Corp.

Abstract

Abstract This paper presents results of a laboratory study of retrograde condensate recovery by revaporization into dry injection gas. Flow tests were performed in 10.6-ft long sandpacks at 100F and 1,500 psi. In three runs methane revaporized the liquid from a n-heptane-methane mixture in the presence of immobile water. Two of these tests were water-wet, and the third was totally oil-wet. In the three runs n-heptane recovery was complete after 2.5 hydrocarbon PV of injection. There was no significant performance difference between the two wettability extremes. In a fourth experiment, a methane-hydrogen sulfide mixture revaporized a synthetic light, sour condensate. No water saturation was present. Equilibrium compositions and volumetric data were obtained for the four-component condensate. The heavy component, n-heptane, was removed alter 6 PV production. Comparison of the effluent fluid compositions with known equilibrium data shows that the flowing fluid was equilibrium vapor and that the mixing zone between equilibrium vapor and dry injection gas was short. Data indicated that complete recovery of retrograde liquid occurred after it was contacted by a sufficient quantity of dry gas. Introduction When pressure declines below the fluid dew point in a gas condensate reservoir, a liquid phase forms. In this process, referred to as retrograde condensation, the quantity of liquid formed is frequently small enough that the liquid is not a flowing phase. To prevent loss of valuable retrograde liquids, the process of dry gas cycling has been employed for several years as a more or less standard practice. In this procedure the reservoir pressure is maintained above the fluid dew point so that the liquid components may be produced as vapor and then separated at the surface. Although full pressure maintenance by gas cycling seems ideal in terms of preventing liquids loss, several factors can reduce the attractiveness of such an operation. From a study of a condensate reservoir in Alberta, Canada, Havlena et al. concluded that cycling under conditions of declining pressure leads to economic advantages and to a high recovery of hydrocarbon liquids. This study considered effects of volumetric sweep efficiency, retrograde behavior of the original wet gas and revaporization characteristics of the retrograde liquid when contacted by dry gas. The first major work concerning revaporization of liquid in a gas condensate system is that of Standing et al. Calculations based upon the PVT behavior of a recombined gas condensate fluid indicated that all retrograde liquid can be recovered if it is contacted by a sufficient quantity of dry gas. The paper considered the effect of variable permeability upon the recovery of retrograde liquid. Standing et al. concluded that recovery of heavier components in the retrograde liquid is greatest if reservoir pressure is allowed to decline below the dew point prior to dry gas injection. Since the work of Standing et al., several laboratory studies have been reported which show that recovery of hydrocarbon liquids by vaporization into dry injected gas can contribute to increased recovery above that obtained by ordinary production practices. Vaporization from retrograde condensate, conventional oil and volatile oils reservoirs has been considered. There is little work that deals with revaporization recovery from condensate reservoirs. SPEJ P. 87ˆ

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3