Novel Interconnected Bonded Structure Enhances Proppant Flowback Control

Author:

Burukhin A..1,Kalinin S..1,Abbott J..1,Bulova M..1,Wu Y..2,Crandall M..2,Kadoma I..2,Begich M..2,Papp S..2

Affiliation:

1. Schlumberger

2. 3M

Abstract

Abstract Loss of proppant from the near wellbore region of a fracture results in fracture pinch out and a noticeable decrease in well productivity. Downhole and surface equipment can be damaged when proppant flowback occurs as well. Resin coated proppant (RCP), fibers, deformable particles, resin on the fly, etc have been used to improve proppant pack stability. Selection of the appropriate proppant flowback control technology is made with consideration of engineering factors such as fluid compatibility issues, setting time, resistance to cycling stress-loading issues, and conductivity damage. The goal of the current work was to combine the beneficial features of mechanical proppant flowback control with chemical adhesive flowback control products. With mechanical features, the proppant pack stability is enhanced by blending fibers with proppant, thus increasing particle-particle interaction, and increasing the stability of proppant arches. This mechanism can enable aggressive flowback while providing an instantaneous, albeit a modest level of proppant flowback control. With the addition of an adhesive bonding mechanism to a mechanical flowback control material, the bicomponent material substantially increases proppant pack stabilization. Using a high temperature, high pressure proppant flowback control apparatus, we show the impact of particle bonding on the dosing required to achieve a specific level of proppant pack stability. We also show the impact of the flexible nature of bonded matrix on the proppant pack stability and tolerance to cyclic loading. A mechanistic proppant pack stability model was developed based on our experimental study. We discuss this model and its application towards the selection of the appropriate proppant flowback control technology for specific well conditions. We conclude the paper by discussing field cases of effective proppant flowback prevention techniques deployed as a result of model recommendation.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3