Stress Sensitivity In The Dulang Field - How It Is Related To Productivity

Author:

Bin Tajul Amar Zarool Hassan1,Altunbay Mehmet1,Barr Duncan1

Affiliation:

1. Petronas Carigali Sdn. Bhd., Core Laboratories Sdn. Bhd.

Abstract

Abstract All rocks are sensitive to changes in stress. In the Dulang Field sandstones, stress sensitivity is affected by differences in texture, mineralogy and clay type. In this study, we present the results of a study that shows how stress sensitivity is related to the make up of a rock and how itaffects the productivity. The sensitivity of permeability - and therefore transmissivity - to stress in the Dulang Field strongly correlates with the general classification of reservoir quality with better quality rocks showing lesser sensitivity to stress. However, there are some anomalies in the stress sensitivity of porosity. While the sensitivity of permeability to stress increases with decreasing rock quality, the same does not hold for the sensitivity of porosity to stress. These deviations are explained by changes in cementation, clay type, clay morphology and clay locations in the pore structure. Understanding why stress sensitivity changes in the Dulang Field is essential for its future development. Knowing the reasons behind reservoir behaviour allows better prediction and control of future production. Some zones will compact differently from others as the field produces. Differences in compaction are due to the different make up of the reservoir rocks. Heterogeneity in compaction affects the productivity irregularly, and therefore, the economics of the field. By knowing which zones are likely to compact first, production rates and scheduling can be adjusted to reduce the stress-induced damage. The findings of this study can be used to make more realistic prediction of future production rates via numerical simulators, thus providing a tool for improving field management and company profits. This is important not only for the Dulang Field, but also for any field where changes in stress are likely to affect production due to heterogeneous compaction of the reservoir. Introduction Reservoir compaction during fluid withdrawal is simply a response to change in in situ stress conditions. Owing to the production of fluids from a reservoir, pore pressure declines while overburden stresses remain constant. The relative increase in stress caused by production alters all physical properties of rocks. The degree of alteration in rock properties is heterogeneous owing to the heterogeneous make up of the rocks. The varying degree in compaction manifests itself as different percentages of reductions in porosity and, most importantly, lessening of transmissivity. The direct effect of reduction in transmissivity is a drastic decline in fluid flow through the rock. This study generates a stress-sensitivity profile that shows vertical variation in the proneness of the reservoir to compaction. This provides a tool for adjusting and scheduling production rates to prevent stress-induced damage.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3