The Velocity and Shape of Convected Elongated Liquid Drops in Vertical Narrow Gaps

Author:

Shad S.1,Salarieh M.1,Maini B.B.1,Gates I.D.1

Affiliation:

1. University of Calgary

Abstract

Abstract The motion and shape of a liquid drop through another continuous liquid phase (conveying phase) in a vertical Hele-Shaw cell with two different apertures were investigated experimentally. Two different liquid/liquid systems were tested. In all cases, the continuous phase was more viscous and wetted the bounding walls. In the capillarity-dominated region, the irregular shape of the discontinuous phase changed with time and distance, with much lower velocity than that of the conveying phase. In contrast to gas/liquid systems, the velocity of these stabilized, elongated drops was 2.5 to almost 5 times higher than that of conveying liquid. Despite the similarities between flow in vertical and horizontal Hele-Shaw cells, the velocity of droplets in a vertical fracture is different from that of a horizontal fracture. A new correlation is derived from dimensionless analysis and the experimental data to predict the elongated drop velocity as a function of the dimensionless parameters governing the system. Introduction Two-phase flow in micro-fractures is fundamental to many different fields of advanced science and technology, such as chemical process engineering, bioengineering, medical and genetic engineering, as well as petroleum engineering. For instance, understanding the flow of two-phase fluids in near-parallel gaps through fractured rocks has a significant effect on design of different recovery methods for naturally fractured reservoir. The flow pattern of two-phase immiscible flow in a fracture depends on the flow rates of the phases, the geometry, aperture, roughness of the fracture, the flow properties of the phases and interfacial tension between the phases. The flow patterns in a fracture are different from that in macro-sized rectangular ducts or pipes because of the small aperture, which can enhance capillary effects. The flow structure in the fracture affects the flow and transport through the surrounding porous matrix blocks. The slug flow pattern in a fracture, which occurs over a wide range of parameters, is frequently encountered in oil-wet fractured reservoirs during the immiscible displacement of viscous oil. It also occurs in natural gas reservoirs during displacement of water during gas production.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The effect of fracture aperture and flow rate ratios on two-phase flow in smooth-walled single fracture;Journal of Petroleum Exploration and Production Technology;2013-01-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3