Breakthrough Polymer Water-Shutoff System Shows Promise for Carbonate Ghawar Field

Author:

Wilson Adam1

Affiliation:

1. JPT Special Publications Editor

Abstract

This article, written by Special Publications Editor Adam Wilson, contains highlights of paper SPE 183558, “A Breakthrough Water-Shutoff System for Super-K Zones in Carbonate Ghawar Field: Adsorption and Polymer System,” by Ayman R. Al-Nakhli, SPE, Mohammed Bataweel, SPE, Ayman Almohsin, SPE, and Hameed Al-Badairy, Saudi Aramco, prepared for the 2016 Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, 7–10 November. The paper has not been peer reviewed. Excessive water production from hydrocarbon-producing wells can adversely affect the economic life of the well. The major challenge for water control in carbonate reservoirs is polymer bonding to the rock surface. Most commercial products are designed for sandstone formations, and most polymers will not strongly adsorb to carbonate reservoirs. A new water-shutoff polymer system has been developed for carbonate formations and shows great stability. Introduction The objective of the project was to develop additives to be used as a smart sealant that can be used to control unwanted water production. Treatment of water associated with hydrocarbon production is a key goal because the production of salt water has resulted in serious environmental issues. Excess water production makes a well unproductive and economically inefficient, leading to early abandonment of wells and reduction in hydrocarbon production. Reservoir heterogeneity is the single most important cause of low oil recovery and early excess water production. Gel treatments have been used extensively in field applications to improve oil recovery and suppress water production. Gel treatments at injection wells to plug water thief zones are a proven cost-effective method to improve sweep efficiency. In addition, gel treatments reduce excess water production during hydrocarbon production. The initial focus of the project was to develop materials that impart relative permeability modification in naturally fractured carbonate reservoirs with permeability from 1 to 3 darcies in the Ghawar Field, which is a heterogeneous carbonate. Development Chemical functionality that can bond strongly to the target carbonate reservoirs is an extremely important component of the development of the smart sealant. Methodologies to provide strong adhesion to carbonate surfaces, and hence to formations, have been developed using silicon-containing molecules. In addition, the additives developed have shown promise on both water- and oil-wet surfaces. The list of chemicals that could be assessed as additives to bond to the carbonate surface was long, so the team developed a laboratory-based screen to test adhesion rapidly. For the first screens, calcium carbonate powder was a good model because it is readily available and is a major constituent of carbonate reservoirs. The experiments involved taking accurately weighed samples of calcium carbonate and exposing them to different target additives that could potentially bond to the surface. Subsequently, the samples were washed extensively with water to remove any materials that had not chemically adhered to the surface, were dried under reduced pressure, and finally were reweighed. Any significant weight increases were indicative of bonding.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3