Pore Typing and Use of Capillary Bundles for Porefacies Constrained Saturation Model: A Case Study from Minagish Oolite Reservoir, Umm Gudair Field, Kuwait

Author:

Dutta Dipankar1,Banerjee Tapan K.1,Al Khalifa Nasser1

Affiliation:

1. KOC

Abstract

Abstract Seventy nine HPMI (high pressure mercury injection) derived saturation height function curves are used to create nine different capillary bundles for Minagish Oolite carbonate reservoir. Each capillary bundle is tied up with its sedimentological and petrophysical attributes to create a discrete pore type/porefacies. The best pore type (Type 0) has well connected pore throat with lesser tortuosity as represented by very low entry point, low irreducible water saturation (Swirr) and wide plateau of the function curve. The worst one (Type 8) is very fine pore throats with high restriction of flow due to high entry point and very high irreducible water saturation. Good porefacies (Type 0, 1 and 2) represent mostly intergranular pore dominated samples, not much affected by subsequent cementation and dissolution. Intermediate pore types (Type 3,4 and 5) are found to have both primary intergranular and secondary solution rich pore spaces. The bad porefacies (Type 6,7 and 8) are either mud dominated or highly cemented rocks with restricted pore spaces. HPMI based poro-perm clusters are also used to create porefacies in the uncored wells and subsequently populated in 3D grid using variogram. Saturation height function of each representative capillary bundle is then used to tie the saturation value of individual porefacies along the well path in more than 250 wells. The newly constructed saturation grid is well tied with specific pore type of each facies and thus suitable to explain the fluid flow behavior within the reservoir. Well wise production behaviour and certain issues of anomalous production rate as well as water cut are satisfactorily explained through this workflow.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3