Affiliation:
1. China University of Petroleum, Beijing, and Tsinghua University
2. China University of Petroleum, Beijing
3. Tsinghua University
Abstract
Summary
With oil and gas wells extending deeper and deeper, downhole conditions become increasingly complicated, and thus increasingly sophisticated wellbore models are needed. Current wellbore models usually neglect the coupling effect in the cement–consolidation process and do not sufficiently consider the whole operation process of the wellbore. To overcome these shortcomings, short–term and long–term mechanical wellbore models while considering the relevant stages in wellbore life are built. In the short–term model, wellbore–operation stages include casing running, cement displacement, and cement consolidation. The governing equation of cement consolidation while considering the coupling effect between cement hardening and volume change is presented. In the long–term model, the governing equation of formation creep while considering prestresses and initial strains is given. The elastic/viscoelastic–correspondence principle and stress–superposition method are used to simplify the derivation. Next, the effects of relevant factors on short–term and long–term wellbore stresses are analyzed. The results show that wellbore stresses caused by cement consolidation will be underestimated when the coupling effects are neglected. The most vulnerable positions for wellbore failure are on different cylinder elements under different wellbore stages. Wellbore properties, short–term stresses, and formation creep greatly affect wellbore mechanical behaviors. Therefore, the new model provides an important basis for wellbore–failure prediction and optimal design.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献