Experimental and Numerical Investigation of Oil Recovery from Bakken Formation by Miscible CO2 Injection

Author:

Zhang Ke1

Affiliation:

1. Stanford University

Abstract

Abstract Unconventional liquid reservoirs are characterized by small matrix permeability that is several orders of magnitude lower than conventional oil reservoirs. The combination of multi-stage hydraulic fracturing and horizontal drilling has improved the overall profitability of these tight-oil reservoirs by enhancing the wellbore - matrix connectivity. Under primary production, however, the recovery factor remains in the range of only 5% to 10% of original oil in place (OOIP). Considering such a large resource base, even small improvements in productivity could lead to millions of barrels of additional oil. Therefore, the need to develop a viable enhanced oil recovery technique for unconventional oil reservoirs is evident. This study investigates technical feasibility of carbon dioxide as an enhanced oil recovery agent for tight-oil reservoirs. Above minimum miscibility pressure (MMP), CO2 and oil are miscible leading to reduction in capillary forces and therefore high local displacement efficiency. The miscibility pressure of CO2 is also significantly lower than the pressure required for other gases, which makes CO2 miscible injection attainable under a broad spectrum of reservoir pressures. The coreflood experiments recovered more than 70% of the OOIP from a Bakken core sample with an average porosity of 7.5% and permeability of 1.8 μd. CT scans at dual energies were used as an additional tool to visualize fluid flow and distribution at core level. We discovered that the impact of CO2 penetration is better captured at a lower energy level where the X-ray attenuation mechanism of photoelectric absorption becomes dominant. To decipher the oil recovery mechanisms in the coreflood experiment, a numerical compositional model was constructed to reproduce the laboratory results. Vaporization of light hydrocarbon components into CO2 is shown as a major recovery mechanism. Other controlling factors include re-pressurization, oil swelling, viscosity and interfacial tension reduction. History matching with the laboratory experiment introduces additional complexities such as rock heterogeneities and presence of a fracture that promotes flow perpendicular to the core length. The above issues need to be addressed to match the displacement process exactly.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3