The Permeability of a Uniformly Vuggy Porous Medium

Author:

Neale Graham H.1,Nader Walter K.1

Affiliation:

1. U. of Alberta

Abstract

Abstract Using the creeping Navier Stokes equation within a spherical cavity and the Darcy equation in the surrounding homogeneous and isotropic porous medium, the flow field in the entire system is evaluated. Applying this result to a representative generalizing model of a uniformly vuggy, homogeneous and isotropic porous medium, an engineering estimation of the interdependence of the matrix permeability km, the vug porosity permeability km, the vug porositytotal volume of vug space 0v = ----------------------------total volume of sample and the system permeability ks of the vuggy porous medium is derived. This interdependence can be expressed by the formula: Introduction The objective of this study is the derivation of an engineering formula that shows the interdependence of matrix permeability, km, vug porosity, 0 v, and system permeability, ks, of a uniformly vuggy porous medium. In the first section, with the above porous medium. In the first section, with the above goal in mind and to satisfy more general interests, we shall study and predict the flow field within a single cavity bounded by a sphere, of radius R, and in the surrounding homogeneous and isotropic porous medium. In the second section, we shall porous medium. In the second section, we shall suggest as a generalizing model of a uniformly vuggy, homogeneous and isotropic porous medium a regular cubic array of monosized spherical cavities. Applying the formula for the pressure field near a single spherical cavity, we shall then develop the sought engineering formula. To describe the creeping flow of the incompressible liquid of viscosity, in the spherical cavity, we shall employ the creeping Navier Stokes equation, .............................(1) The Darcy equation, ,...........................(2) will be used to describe the flow of this liquid in the porous medium of permeability k that fills the space outside the cavity. p designates the liquid pressure referred to datum, denotes the flow pressure referred to datum, denotes the flow vector, and * is used to indicate macroscopically averaged quantities pertaining specifically to a porous medium. porous medium. In hydrodynamics, one generally requests continuity of the pressure, of the flow vector, and of the shear tensor throughout the fundamental domain of the problem - in particular, along the boundary surfaces, which separate subdomains. When applying these principles to this problem, one would impose at the spherical boundary that separates the cavity from the porous medium:continuity of the pressure,continuity of the component of u that is orthogonal to the surface,continuity of the other component of u that is tangential to the surface,continuity of the shear component tangential to the surface. Arguments of this nature have lead to the suggestion of a generalization of the Darcy equation, namely, the Brinkman equation, ...............(3) However, both the necessity and the validity of this generalization have been challenged; indeed, it has been shown that a mathematically consistent solution of our problem may be obtained, using Eqs. 1 and 2 within the respective subdomains, provided one abandons the request for continuity of the shear at the wall of the cavity (compare Boundary Condition d above).** SPEJ P. 69

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3