A Low-Tension Waterflooding Process

Author:

Foster W.R.1

Affiliation:

1. Mobil Research and Development Corp.

Abstract

A field test to examine some aspects of surfactant behavior, and a later polymer injection study, led to the conclusion that a tertiary oil bank can polymer injection study, led to the conclusion that a tertiary oil bank can be formed in a reservoir using low-tension surfactants. Another conclusion is that it is essential to control the mobility immediately behind the bank to insure that a significant fraction of the mobilized oil will be driven to the producing wells. Introduction The work summarized here represents a part of the effort by Mobil Research and Development Corp. to develop an economic low-tension waterflooding process. Various aspects of displacement at low tension process. Various aspects of displacement at low tension are discussed in general terms. Details of the extensive background effort supporting the necessary laboratory and field experiments, an interpretation of results, and the development of an adequate transport theory are deferred to later publications. Not all aspects of this process have been field tested yet. However, Mobil has carried out a field test in South Texas to examine factors relating primarily to surfactant behavior. A polymer injection study was conducted at the same site some time later. As a result of these field studies and supporting theory we conducted that a tertiary oil bank can be fanned in a reservoir using low-tension surfactants and that mobility control immediately behind the bank is essential to insure that a significant fraction of the "mobilized oil" will be driven to producing wells. A surfactant waterflooding process capable of producing a tertiary oil bank has also been described by producing a tertiary oil bank has also been described by Gogarty and Tosch. One significant difference between their "Maraflood" process and the process described here is the manner in which the surfactant is used. Maraflood employs a surfactant slug that is miscible with the reservoir crude. Miscibility implies zero interfacial tension between this slug and the reservoir crude oil. Achieving and, particularly, maintaining this miscibility condition places rigorous requirements on the composition of the slug. Our process, on the other hand, does not depend upon process, on the other hand, does not depend upon miscibility between crude oil and water, but relies on very low interfacial tension between a water solution/ dispersion of a surfactant and the reservoir crude oil. Also, the compositional requirements that must be met in order to achieve and maintain a condition of very low tension are somewhat different from those needed in the Maraflood process. Description of the Process In what follows it is assumed that the process is started in a sandstone reservoir that is nearly or completely watered out. The water phase present in the reservoir at this stage is assumed to be a typical oilfield brine, high in total dissolved solids and in divalent cations, particularly calcium and magnesium. A regular pattern from the existing injectors and producers is chosen, with high areal sweep as an producers is chosen, with high areal sweep as an important design criterion. The process consists of injecting three slugs of water with different chemical compositions. These will be denoted as the protective slug, the surfactant slug, and the mobility-control slug, or as Slugs 1, 2, and 3, respectively. The protective slug is an aqueous solution of sodium chloride, Within limits, its volume is somewhat arbitrary, in the range of 0.1 of the pattern pore volume. JPT P. 205

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3