Well Des gn and Well Spacing Optimisation in Unconventional Plays

Author:

Baker M..1,Mazumder S..1,Sharma H..1,Philpot J. A.1,Scott M..1,Wittemeier R..1

Affiliation:

1. Arrow Energy

Abstract

Abstract The risk profile for an unconventional resource play differs from a conventional opportunity in that the producibility, per well Estimated Ultimate Recovery (EUR) and Unit Technical Cost (UTC) are more important for identifying potential success than proving the presence of in-place volumes. Unconventional plays are often characterised by a large number of wells, lower density of subsurface data, large geographical extent and corresponding large range of uncertainty in subsurface parameters. The rapid economic screening of well design and spacing parameters for multiple subsurface realisations is integral in the planning stages of large unconventional plays. An additional complexity is the use of horizontal or complex geometry well designs which may limit or complicate the application of full field reservoir simulation methods. Recoverable volumes are strongly dependent on the proposed well design and spacing. These should be systematically evaluated and optimised by identifying the well density beyond which the incremental recovery and commerciality benefit begins to erode due to the extra well costs and/or interference between wells. A method for efficient analysis and comparison of complex well design and well spacing options has been designed to assist in unconventional play planning and evaluation. The method involves the automatic generation and analysis of a large number (thousands) of dynamic reservoir simulation models. The models are analysed systematically for major value drivers to: identify the most efficient well design and optimal spacing factors; select the most economic well designs; assess the impact of subsurface uncertainties; and assist in rig selection and surface planning.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3