Understanding Your Wells: Conventional Nodal Analysis; Not a Solution for Depleting Fields

Author:

Ahmed Hassaan1,Mallah Sohail Ahmed1,Anwar Muhammad Talha1,Ali Muhammad1,Ali Syed Dost1,Javed Waqar Ali1,Usman Muhammad1

Affiliation:

1. Pakistan Petroleum Limited

Abstract

AbstractModeling fluid behavior using conventional nodal analysis software is a common practice in the oil and gas industry. However, understanding flow physics helps production engineers to understand the difference between predicted and actual flow behavior. This work presents a methodology applied to a depleting oil and gas field in northern Pakistan. The adopted approach not only helped to overcome vertical lift performance issues in the wellbore, but it also resulted in improved and sustained oil and gas production from the well. Based on these results, wells in the field with vertical lift performance issues were identified and evaluated using the analysis approach presented in this work.Basic petroleum engineering concepts are implemented using a multi-tier approach, and a proposal was outlined to understand the sluggish flow behavior from the well. The analysis approach characterizes the problem as "IPR dominated" or "VLP dominated" flow using the well's historical data and nodal analysis results, identifies the requirement for a new data set, and then operations are planned accordingly. During execution, coil tubing with memory gauges was deployed with a provision to simulate Coil Tubing Gas Lift (CTGL) with single point injection. This arrangement not only resulted in sustained production from the well, but it also provided leverage to gather bottomhole data corresponding to multiple flow parameters during sensitivity analysis.The workflow explains the physics behind oil and gas wells with sluggish liquid production and the inadequacy of conventional nodal analysis software in predicting production rates with certainty. The application of this workflow converted a "sick well" into a "sustained production well," which was previously ruled out for the implementation of ALS techniques during initial screening using conventional nodal analysis software.This novel approach highlighted the "domain of applicability" of conventional nodal analysis software and proposed a detailed workflow for artificial lift candidate selection. This workflow served as the blueprint for the overall evaluation of well productivity in depleting fields with VLP issues.

Publisher

SPE

Reference12 articles.

1. Bottom-hole Pressures in Oil Wells;Millikan,1931

2. Calculation of Theoretical Productivity Factor;Evinger,1942

3. Reservoir Performance During Two-Phase Flow;Weller;SPE Journal of Petroleum Technology,1966

4. Inflow Performance Relationships for Solution-Gas Drive Wells;Vogel;SPE Journal of Petroleum Technology,1968

5. Inflow Performance Relationships for Damaged Wells Producing by Solution-Gas Drive;Standing;SPE Journal of Petroleum Technology,1970

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3